ETH Price: $2,939.59 (-0.61%)

Contract

0xAbed660eae79fF8945f3E8d0edC42657695a814C

Overview

ETH Balance

0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To
Conclude365397482026-01-25 6:04:4552 mins ago1769321085IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365396342026-01-25 6:03:4553 mins ago1769321025IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365382162026-01-25 5:52:531 hr ago1769320373IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365382112026-01-25 5:52:521 hr ago1769320372IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365382062026-01-25 5:52:501 hr ago1769320370IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365382022026-01-25 5:52:481 hr ago1769320368IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365381992026-01-25 5:52:471 hr ago1769320367IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365381952026-01-25 5:52:451 hr ago1769320365IN
0xAbed660e...7695a814C
0 ETH0.0000140.04525
Conclude365365062026-01-25 5:39:431 hr ago1769319583IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365362562026-01-25 5:37:431 hr ago1769319463IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365360022026-01-25 5:35:431 hr ago1769319343IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365358732026-01-25 5:34:421 hr ago1769319282IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365356092026-01-25 5:32:431 hr ago1769319163IN
0xAbed660e...7695a814C
0 ETH0.000014450.04525
Conclude365352642026-01-25 5:29:421 hr ago1769318982IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365350412026-01-25 5:27:421 hr ago1769318862IN
0xAbed660e...7695a814C
0 ETH0.000014450.04525
Conclude365039762026-01-25 1:02:175 hrs ago1769302937IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365037172026-01-25 1:00:175 hrs ago1769302817IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365035982026-01-25 0:59:165 hrs ago1769302756IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365034892026-01-25 0:58:165 hrs ago1769302696IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365033822026-01-25 0:57:165 hrs ago1769302636IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365032672026-01-25 0:56:166 hrs ago1769302576IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365031442026-01-25 0:55:166 hrs ago1769302516IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365030352026-01-25 0:54:166 hrs ago1769302456IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365029192026-01-25 0:53:166 hrs ago1769302396IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
Conclude365028082026-01-25 0:52:166 hrs ago1769302336IN
0xAbed660e...7695a814C
0 ETH0.000010160.04525
View all transactions

Latest 6 internal transactions

Advanced mode:
Parent Transaction Hash Block From To
273366752025-11-26 12:58:5159 days ago1764161931
0xAbed660e...7695a814C
0.001 ETH
273366032025-11-26 12:58:1959 days ago1764161899
0xAbed660e...7695a814C
0.001 ETH
273365702025-11-26 12:58:0559 days ago1764161885
0xAbed660e...7695a814C
0.0013 ETH
273365032025-11-26 12:57:4159 days ago1764161861
0xAbed660e...7695a814C
0.0014 ETH
161241432025-08-05 10:30:11172 days ago1754389811
0xAbed660e...7695a814C
 Contract Creation0 ETH
161241432025-08-05 10:30:11172 days ago1754389811  Contract Creation0 ETH
Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
TransparentUpgradeableProxy

Compiler Version
v0.8.28-1.0.2

ZkSolc Version
v1.5.15

Optimization Enabled:
Yes with Mode 3

Other Settings:
paris EvmVersion
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/transparent/TransparentUpgradeableProxy.sol)

pragma solidity ^0.8.22;

import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";
import {ERC1967Proxy} from "../ERC1967/ERC1967Proxy.sol";
import {IERC1967} from "../../interfaces/IERC1967.sol";
import {ProxyAdmin} from "./ProxyAdmin.sol";

/**
 * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
 * does not implement this interface directly, and its upgradeability mechanism is implemented by an internal dispatch
 * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
 * include them in the ABI so this interface must be used to interact with it.
 */
interface ITransparentUpgradeableProxy is IERC1967 {
    /// @dev See {UUPSUpgradeable-upgradeToAndCall}
    function upgradeToAndCall(address newImplementation, bytes calldata data) external payable;
}

/**
 * @dev This contract implements a proxy that is upgradeable through an associated {ProxyAdmin} instance.
 *
 * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
 * clashing], which can potentially be used in an attack, this contract uses the
 * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
 * things that go hand in hand:
 *
 * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
 * that call matches the {ITransparentUpgradeableProxy-upgradeToAndCall} function exposed by the proxy itself.
 * 2. If the admin calls the proxy, it can call the `upgradeToAndCall` function but any other call won't be forwarded to
 * the implementation. If the admin tries to call a function on the implementation it will fail with an error indicating
 * the proxy admin cannot fallback to the target implementation.
 *
 * These properties mean that the admin account can only be used for upgrading the proxy, so it's best if it's a
 * dedicated account that is not used for anything else. This will avoid headaches due to sudden errors when trying to
 * call a function from the proxy implementation. For this reason, the proxy deploys an instance of {ProxyAdmin} and
 * allows upgrades only if they come through it. You should think of the `ProxyAdmin` instance as the administrative
 * interface of the proxy, including the ability to change who can trigger upgrades by transferring ownership.
 *
 * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
 * inherit from that interface, and instead `upgradeToAndCall` is implicitly implemented using a custom dispatch
 * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
 * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
 * implementation.
 *
 * NOTE: This proxy does not inherit from {Context} deliberately. The {ProxyAdmin} of this contract won't send a
 * meta-transaction in any way, and any other meta-transaction setup should be made in the implementation contract.
 *
 * IMPORTANT: This contract avoids unnecessary storage reads by setting the admin only during construction as an
 * immutable variable, preventing any changes thereafter. However, the admin slot defined in ERC-1967 can still be
 * overwritten by the implementation logic pointed to by this proxy. In such cases, the contract may end up in an
 * undesirable state where the admin slot is different from the actual admin. Relying on the value of the admin slot
 * is generally fine if the implementation is trusted.
 *
 * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the
 * compiler will not check that there are no selector conflicts, due to the note above. A selector clash between any new
 * function and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This
 * could render the `upgradeToAndCall` function inaccessible, preventing upgradeability and compromising transparency.
 */
contract TransparentUpgradeableProxy is ERC1967Proxy {
    // An immutable address for the admin to avoid unnecessary SLOADs before each call
    // at the expense of removing the ability to change the admin once it's set.
    // This is acceptable if the admin is always a ProxyAdmin instance or similar contract
    // with its own ability to transfer the permissions to another account.
    address private immutable _admin;

    /**
     * @dev The proxy caller is the current admin, and can't fallback to the proxy target.
     */
    error ProxyDeniedAdminAccess();

    /**
     * @dev Initializes an upgradeable proxy managed by an instance of a {ProxyAdmin} with an `initialOwner`,
     * backed by the implementation at `_logic`, and optionally initialized with `_data` as explained in
     * {ERC1967Proxy-constructor}.
     */
    constructor(address _logic, address initialOwner, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
        _admin = address(new ProxyAdmin(initialOwner));
        // Set the storage value and emit an event for ERC-1967 compatibility
        ERC1967Utils.changeAdmin(_proxyAdmin());
    }

    /**
     * @dev Returns the admin of this proxy.
     */
    function _proxyAdmin() internal view virtual returns (address) {
        return _admin;
    }

    /**
     * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior.
     */
    function _fallback() internal virtual override {
        if (msg.sender == _proxyAdmin()) {
            if (msg.sig != ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                revert ProxyDeniedAdminAccess();
            } else {
                _dispatchUpgradeToAndCall();
            }
        } else {
            super._fallback();
        }
    }

    /**
     * @dev Upgrade the implementation of the proxy. See {ERC1967Utils-upgradeToAndCall}.
     *
     * Requirements:
     *
     * - If `data` is empty, `msg.value` must be zero.
     */
    function _dispatchUpgradeToAndCall() private {
        (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
        ERC1967Utils.upgradeToAndCall(newImplementation, data);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {ERC165Upgradeable} from "../utils/introspection/ERC165Upgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControl, ERC165Upgradeable {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;


    /// @custom:storage-location erc7201:openzeppelin.storage.AccessControl
    struct AccessControlStorage {
        mapping(bytes32 role => RoleData) _roles;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControl")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant AccessControlStorageLocation = 0x02dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800;

    function _getAccessControlStorage() private pure returns (AccessControlStorage storage $) {
        assembly {
            $.slot := AccessControlStorageLocation
        }
    }

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    function __AccessControl_init() internal onlyInitializing {
    }

    function __AccessControl_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        AccessControlStorage storage $ = _getAccessControlStorage();
        return $._roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        AccessControlStorage storage $ = _getAccessControlStorage();
        return $._roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        AccessControlStorage storage $ = _getAccessControlStorage();
        bytes32 previousAdminRole = getRoleAdmin(role);
        $._roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        AccessControlStorage storage $ = _getAccessControlStorage();
        if (!hasRole(role, account)) {
            $._roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` from `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        AccessControlStorage storage $ = _getAccessControlStorage();
        if (hasRole(role, account)) {
            $._roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reinitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Pointer to storage slot. Allows integrators to override it with a custom storage location.
     *
     * NOTE: Consider following the ERC-7201 formula to derive storage locations.
     */
    function _initializableStorageSlot() internal pure virtual returns (bytes32) {
        return INITIALIZABLE_STORAGE;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        bytes32 slot = _initializableStorageSlot();
        assembly {
            $.slot := slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import {IERC5267} from "@openzeppelin/contracts/interfaces/IERC5267.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 */
abstract contract EIP712Upgradeable is Initializable, IERC5267 {
    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    /// @custom:storage-location erc7201:openzeppelin.storage.EIP712
    struct EIP712Storage {
        /// @custom:oz-renamed-from _HASHED_NAME
        bytes32 _hashedName;
        /// @custom:oz-renamed-from _HASHED_VERSION
        bytes32 _hashedVersion;

        string _name;
        string _version;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.EIP712")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant EIP712StorageLocation = 0xa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d100;

    function _getEIP712Storage() private pure returns (EIP712Storage storage $) {
        assembly {
            $.slot := EIP712StorageLocation
        }
    }

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    function __EIP712_init(string memory name, string memory version) internal onlyInitializing {
        __EIP712_init_unchained(name, version);
    }

    function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing {
        EIP712Storage storage $ = _getEIP712Storage();
        $._name = name;
        $._version = version;

        // Reset prior values in storage if upgrading
        $._hashedName = 0;
        $._hashedVersion = 0;
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        return _buildDomainSeparator();
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @inheritdoc IERC5267
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        EIP712Storage storage $ = _getEIP712Storage();
        // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized
        // and the EIP712 domain is not reliable, as it will be missing name and version.
        require($._hashedName == 0 && $._hashedVersion == 0, "EIP712: Uninitialized");

        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
     * are a concern.
     */
    function _EIP712Name() internal view virtual returns (string memory) {
        EIP712Storage storage $ = _getEIP712Storage();
        return $._name;
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
     * are a concern.
     */
    function _EIP712Version() internal view virtual returns (string memory) {
        EIP712Storage storage $ = _getEIP712Storage();
        return $._version;
    }

    /**
     * @dev The hash of the name parameter for the EIP712 domain.
     *
     * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead.
     */
    function _EIP712NameHash() internal view returns (bytes32) {
        EIP712Storage storage $ = _getEIP712Storage();
        string memory name = _EIP712Name();
        if (bytes(name).length > 0) {
            return keccak256(bytes(name));
        } else {
            // If the name is empty, the contract may have been upgraded without initializing the new storage.
            // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design.
            bytes32 hashedName = $._hashedName;
            if (hashedName != 0) {
                return hashedName;
            } else {
                return keccak256("");
            }
        }
    }

    /**
     * @dev The hash of the version parameter for the EIP712 domain.
     *
     * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead.
     */
    function _EIP712VersionHash() internal view returns (bytes32) {
        EIP712Storage storage $ = _getEIP712Storage();
        string memory version = _EIP712Version();
        if (bytes(version).length > 0) {
            return keccak256(bytes(version));
        } else {
            // If the version is empty, the contract may have been upgraded without initializing the new storage.
            // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design.
            bytes32 hashedVersion = $._hashedVersion;
            if (hashedVersion != 0) {
                return hashedVersion;
            } else {
                return keccak256("");
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165Upgradeable is Initializable, IERC165 {
    function __ERC165_init() internal onlyInitializing {
    }

    function __ERC165_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (access/IAccessControl.sol)

pragma solidity ^0.8.20;

/**
 * @dev External interface of AccessControl declared to support ERC-165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted to signal this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
     * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (interfaces/IERC1271.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with `hash`
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

File 11 of 56 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

File 12 of 56 : IERC1967.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)

pragma solidity ^0.8.20;

/**
 * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
 */
interface IERC1967 {
    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Emitted when the beacon is changed.
     */
    event BeaconUpgraded(address indexed beacon);
}

File 13 of 56 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 14 of 56 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Proxy.sol)

pragma solidity ^0.8.22;

import {Proxy} from "../Proxy.sol";
import {ERC1967Utils} from "./ERC1967Utils.sol";

/**
 * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
 * implementation address that can be changed. This address is stored in storage in the location specified by
 * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967], so that it doesn't conflict with the storage layout of the
 * implementation behind the proxy.
 */
contract ERC1967Proxy is Proxy {
    /**
     * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`.
     *
     * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an
     * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor.
     *
     * Requirements:
     *
     * - If `data` is empty, `msg.value` must be zero.
     */
    constructor(address implementation, bytes memory _data) payable {
        ERC1967Utils.upgradeToAndCall(implementation, _data);
    }

    /**
     * @dev Returns the current implementation address.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
     */
    function _implementation() internal view virtual override returns (address) {
        return ERC1967Utils.getImplementation();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Utils.sol)

pragma solidity ^0.8.22;

import {IBeacon} from "../beacon/IBeacon.sol";
import {IERC1967} from "../../interfaces/IERC1967.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";

/**
 * @dev This library provides getters and event emitting update functions for
 * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
 */
library ERC1967Utils {
    /**
     * @dev Storage slot with the address of the current implementation.
     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @dev The `implementation` of the proxy is invalid.
     */
    error ERC1967InvalidImplementation(address implementation);

    /**
     * @dev The `admin` of the proxy is invalid.
     */
    error ERC1967InvalidAdmin(address admin);

    /**
     * @dev The `beacon` of the proxy is invalid.
     */
    error ERC1967InvalidBeacon(address beacon);

    /**
     * @dev An upgrade function sees `msg.value > 0` that may be lost.
     */
    error ERC1967NonPayable();

    /**
     * @dev Returns the current implementation address.
     */
    function getImplementation() internal view returns (address) {
        return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
    }

    /**
     * @dev Stores a new address in the ERC-1967 implementation slot.
     */
    function _setImplementation(address newImplementation) private {
        if (newImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(newImplementation);
        }
        StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
    }

    /**
     * @dev Performs implementation upgrade with additional setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) internal {
        _setImplementation(newImplementation);
        emit IERC1967.Upgraded(newImplementation);

        if (data.length > 0) {
            Address.functionDelegateCall(newImplementation, data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Storage slot with the admin of the contract.
     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /**
     * @dev Returns the current admin.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
     */
    function getAdmin() internal view returns (address) {
        return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
    }

    /**
     * @dev Stores a new address in the ERC-1967 admin slot.
     */
    function _setAdmin(address newAdmin) private {
        if (newAdmin == address(0)) {
            revert ERC1967InvalidAdmin(address(0));
        }
        StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
    }

    /**
     * @dev Changes the admin of the proxy.
     *
     * Emits an {IERC1967-AdminChanged} event.
     */
    function changeAdmin(address newAdmin) internal {
        emit IERC1967.AdminChanged(getAdmin(), newAdmin);
        _setAdmin(newAdmin);
    }

    /**
     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
     * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;

    /**
     * @dev Returns the current beacon.
     */
    function getBeacon() internal view returns (address) {
        return StorageSlot.getAddressSlot(BEACON_SLOT).value;
    }

    /**
     * @dev Stores a new beacon in the ERC-1967 beacon slot.
     */
    function _setBeacon(address newBeacon) private {
        if (newBeacon.code.length == 0) {
            revert ERC1967InvalidBeacon(newBeacon);
        }

        StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;

        address beaconImplementation = IBeacon(newBeacon).implementation();
        if (beaconImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(beaconImplementation);
        }
    }

    /**
     * @dev Change the beacon and trigger a setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-BeaconUpgraded} event.
     *
     * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
     * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
     * efficiency.
     */
    function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
        _setBeacon(newBeacon);
        emit IERC1967.BeaconUpgraded(newBeacon);

        if (data.length > 0) {
            Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
     * if an upgrade doesn't perform an initialization call.
     */
    function _checkNonPayable() private {
        if (msg.value > 0) {
            revert ERC1967NonPayable();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)

pragma solidity ^0.8.20;

/**
 * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
 * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
 * be specified by overriding the virtual {_implementation} function.
 *
 * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
 * different contract through the {_delegate} function.
 *
 * The success and return data of the delegated call will be returned back to the caller of the proxy.
 */
abstract contract Proxy {
    /**
     * @dev Delegates the current call to `implementation`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _delegate(address implementation) internal virtual {
        assembly {
            // Copy msg.data. We take full control of memory in this inline assembly
            // block because it will not return to Solidity code. We overwrite the
            // Solidity scratch pad at memory position 0.
            calldatacopy(0, 0, calldatasize())

            // Call the implementation.
            // out and outsize are 0 because we don't know the size yet.
            let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)

            // Copy the returned data.
            returndatacopy(0, 0, returndatasize())

            switch result
            // delegatecall returns 0 on error.
            case 0 {
                revert(0, returndatasize())
            }
            default {
                return(0, returndatasize())
            }
        }
    }

    /**
     * @dev This is a virtual function that should be overridden so it returns the address to which the fallback
     * function and {_fallback} should delegate.
     */
    function _implementation() internal view virtual returns (address);

    /**
     * @dev Delegates the current call to the address returned by `_implementation()`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _fallback() internal virtual {
        _delegate(_implementation());
    }

    /**
     * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
     * function in the contract matches the call data.
     */
    fallback() external payable virtual {
        _fallback();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeacon {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {UpgradeableBeacon} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/transparent/ProxyAdmin.sol)

pragma solidity ^0.8.22;

import {ITransparentUpgradeableProxy} from "./TransparentUpgradeableProxy.sol";
import {Ownable} from "../../access/Ownable.sol";

/**
 * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
 * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
 */
contract ProxyAdmin is Ownable {
    /**
     * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgrade(address,address)`
     * and `upgradeAndCall(address,address,bytes)` are present, and `upgrade` must be used if no function should be called,
     * while `upgradeAndCall` will invoke the `receive` function if the third argument is the empty byte string.
     * If the getter returns `"5.0.0"`, only `upgradeAndCall(address,address,bytes)` is present, and the third argument must
     * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
     * during an upgrade.
     */
    string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";

    /**
     * @dev Sets the initial owner who can perform upgrades.
     */
    constructor(address initialOwner) Ownable(initialOwner) {}

    /**
     * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation.
     * See {TransparentUpgradeableProxy-_dispatchUpgradeToAndCall}.
     *
     * Requirements:
     *
     * - This contract must be the admin of `proxy`.
     * - If `data` is empty, `msg.value` must be zero.
     */
    function upgradeAndCall(
        ITransparentUpgradeableProxy proxy,
        address implementation,
        bytes memory data
    ) public payable virtual onlyOwner {
        proxy.upgradeToAndCall{value: msg.value}(implementation, data);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, bytes memory returndata) = recipient.call{value: amount}("");
        if (!success) {
            _revert(returndata);
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 27 of 56 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     *
     * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
     * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
     * characters that are not in this range, but other tooling may provide different results.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
     */
    function toDataWithIntendedValidatorHash(
        address validator,
        bytes32 messageHash
    ) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, hex"19_00")
            mstore(0x02, shl(96, validator))
            mstore(0x16, messageHash)
            digest := keccak256(0x00, 0x36)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 34 of 56 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 35 of 56 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {AccessControlUpgradeable} from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";

import {AddressInfo, ERC20Entry} from "./data/Common.sol";
import {VerifiedCompetitionDataSigned, ProofOfGameSigned, ProofOfGame, ProofOfEntrySigned, ProofOfEntry, Game} from "./data/ProofOfGame.sol";
import {WithdrawTicketSigned, WithdrawTicket} from "./data/WithdrawTicket.sol";

import {IBattleWallet} from "./interfaces/IBattleWallet.sol";
import {IUniversalSigValidator} from "./interfaces/IUniversalSigValidator.sol";

import {ProofOfEntrySignatureVerification} from "./signature/ProofOfEntrySignatureVerification.sol";
import {VerifiedCompetitionSignatureVerification} from "./signature/VerifiedCompetitionSignatureVerification.sol";
import {WithdrawTicketSignatureVerification} from "./signature/WithdrawTicketSignatureVerification.sol";

uint256 constant SHARE_PRECISION = 1_000_000_000; // 100%
uint256 constant MAX_TOTAL_COMMISSION = 400_000_000; // 40%

contract BattleWallet is
    IBattleWallet,
    ProofOfEntrySignatureVerification,
    VerifiedCompetitionSignatureVerification,
    WithdrawTicketSignatureVerification,
    AccessControlUpgradeable
{
    using SafeERC20 for IERC20;

    bytes32 public constant AUTHORITY_MANAGER_ROLE = keccak256("AUTHORITY_MANAGER_ROLE");
    bytes32 public constant TREASURY_MANAGER_ROLE = keccak256("TREASURY_MANAGER_ROLE");

    address public matchAuthority;
    address public withdrawAuthority;

    address public elympicsTreasury;
    mapping(bytes16 gameId => address treasury) public developerTreasuries;

    mapping(address player => mapping(address token => uint256 balance)) private balances;
    mapping(bytes22 nonce => bool isNonceUsed) private nonces;

    address public signatureValidator;

    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    function reinitializeV2(address _signatureValidator) external reinitializer(2) {
        require(_signatureValidator != address(0), InvalidAddress());
        signatureValidator = _signatureValidator;
    }

    function topUp(address token, uint256 amount) external {
        IERC20(token).safeTransferFrom(msg.sender, address(this), amount);
        balances[msg.sender][token] += amount;
        emit PlayerToppedUp(msg.sender, token, amount);
    }

    function withdraw(WithdrawTicketSigned memory withdrawTicket) external {
        // Validate data
        WithdrawTicket memory ticket = withdrawTicket.ticket;
        AddressInfo memory verifyingContract = ticket.verifyingContract;
        ERC20Entry memory request = ticket.request;

        require(verifyingContract.target == address(this), InvalidVerifyingContractAddress());
        require(verifyingContract.chainId == block.chainid, InvalidVerifyingContractChainId());

        require(verify(withdrawTicket, withdrawAuthority), InvalidWithdrawTicketSignature());

        require(!nonces[ticket.nonce], NonceAlreadyUsed(ticket.nonce));
        require(block.timestamp <= ticket.deadline, WithdrawTicketSubmittedPastDeadline());

        require(
            balanceOf(ticket.player, request.token) >= request.amount,
            InsufficientPlayerFunds(ticket.player, balanceOf(ticket.player, request.token), request.amount)
        );

        // Process withdraw
        nonces[ticket.nonce] = true;
        balances[ticket.player][request.token] -= request.amount;

        IERC20(request.token).safeTransfer(ticket.player, request.amount);

        emit PlayerWithdrew(ticket.player, request.token, request.amount);
    }

    function conclude(VerifiedCompetitionDataSigned memory competitionData) external {
        // Validate data
        ProofOfGameSigned memory signedProofOfGame = competitionData.proofOfGameSigned;
        AddressInfo memory verifyingContract = competitionData.verifyingContract;
        ProofOfGame memory proofOfGame = signedProofOfGame.proofOfGame;
        Game memory game = proofOfGame.game;

        require(verifyingContract.target == address(this), InvalidVerifyingContractAddress());
        require(verifyingContract.chainId == block.chainid, InvalidVerifyingContractChainId());

        require(verify(competitionData, matchAuthority), InvalidVerifiedCompetitionDataSignature());
        require(verify(signedProofOfGame, matchAuthority), InvalidProofOfGameSignature());

        require(
            competitionData.elympicsCommission + competitionData.developerCommission <= MAX_TOTAL_COMMISSION,
            TotalCommissionExceedsMaxValue(
                competitionData.elympicsCommission + competitionData.developerCommission,
                MAX_TOTAL_COMMISSION
            )
        );

        bytes16 gameId = game.id;
        require(developerTreasuries[gameId] != address(0), DeveloperTreasuryNotSet(gameId));

        // Process player entries and results
        (ERC20Entry memory bet, uint256 signedEntriesCount) = processPlayerEntries(proofOfGame.entries);
        (uint256 resultsLength, int8 bestScore, uint256 winnersCount) = processPlayerResults(proofOfGame.results);
        require(
            signedEntriesCount == resultsLength,
            MismatchedEntriesAndResultsLengths(signedEntriesCount, resultsLength)
        );

        // Compute balance changes
        uint256 totalPrizePool = bet.amount * signedEntriesCount;

        uint256 elympicsCommissionValue = (totalPrizePool * competitionData.elympicsCommission) / SHARE_PRECISION;
        uint256 developerCommissionValue = (totalPrizePool * competitionData.developerCommission) / SHARE_PRECISION;
        uint256 totalCommissionValue = elympicsCommissionValue + developerCommissionValue;

        uint256 winnersPrizePool = totalPrizePool - totalCommissionValue;
        uint256 winnersPrizeShare = winnersPrizePool / winnersCount; // winnersCount >= 1

        uint256 leftover = winnersPrizePool % winnersCount;
        bool shouldCreditLeftover = leftover > 0 ? true : false;

        // Update balances
        ProofOfEntrySigned[] memory entries = proofOfGame.entries;
        int8[] memory results = proofOfGame.results;
        for (uint256 i = 0; i < resultsLength; i++) {
            address player = entries[i].proofOfEntry.player;
            int8 result = results[i];

            if (result == bestScore) {
                if (winnersPrizeShare >= bet.amount) {
                    balances[player][bet.token] += winnersPrizeShare - bet.amount;
                } else {
                    balances[player][bet.token] -= bet.amount - winnersPrizeShare;
                }
                if (shouldCreditLeftover) {
                    shouldCreditLeftover = false;
                    balances[player][bet.token] += leftover;
                }
            } else {
                balances[player][bet.token] -= bet.amount;
            }
        }

        safeTransferToken(IERC20(bet.token), elympicsTreasury, elympicsCommissionValue);
        safeTransferToken(IERC20(bet.token), developerTreasuries[gameId], developerCommissionValue);

        emit MatchConcluded();
    }

    function setMatchAuthority(address newMatchAuthority) external onlyRole(AUTHORITY_MANAGER_ROLE) {
        require(newMatchAuthority != address(0), InvalidAddress());
        matchAuthority = newMatchAuthority;
        emit MatchAuthorityUpdated(newMatchAuthority);
    }

    function setWithdrawAuthority(address newWithdrawAuthority) external onlyRole(AUTHORITY_MANAGER_ROLE) {
        require(newWithdrawAuthority != address(0), InvalidAddress());
        withdrawAuthority = newWithdrawAuthority;
        emit WithdrawAuthorityUpdated(newWithdrawAuthority);
    }

    function setElympicsTreasury(address newElympicsTreasury) external onlyRole(TREASURY_MANAGER_ROLE) {
        require(newElympicsTreasury != address(0), InvalidAddress());
        elympicsTreasury = newElympicsTreasury;
        emit ElympicsTreasuryUpdated(newElympicsTreasury);
    }

    function setDeveloperTreasury(bytes16 gameId, address developerTreasury) external onlyRole(TREASURY_MANAGER_ROLE) {
        developerTreasuries[gameId] = developerTreasury;
        emit DeveloperTreasuryUpdated(gameId, developerTreasury);
    }

    function balanceOf(address player, address token) public view returns (uint256) {
        return balances[player][token];
    }

    function isNonceUsed(bytes22 nonce) public view returns (bool) {
        return nonces[nonce];
    }

    function version() external view returns (uint8) {
        return uint8(_getInitializedVersion());
    }

    function processPlayerEntries(
        ProofOfEntrySigned[] memory signedEntries
    ) internal returns (ERC20Entry memory, uint256) {
        uint256 signedEntriesCount = signedEntries.length;
        require(signedEntriesCount > 0, ProofsOfEntryNotFound());

        ERC20Entry memory firstBet = signedEntries[0].proofOfEntry.bet;
        for (uint256 i = 0; i < signedEntriesCount; i++) {
            ProofOfEntrySigned memory signedProofOfEntry = signedEntries[i];
            ProofOfEntry memory proofOfEntry = signedProofOfEntry.proofOfEntry;
            ERC20Entry memory bet = proofOfEntry.bet;

            require(
                IUniversalSigValidator(signatureValidator).isValidSig(
                    proofOfEntry.player,
                    _hashTypedDataV4(keccak256(encode(proofOfEntry))),
                    signedProofOfEntry.signature
                ),
                InvalidProofOfEntrySignature(i)
            );
            require(!nonces[proofOfEntry.nonce], NonceAlreadyUsed(proofOfEntry.nonce));
            require(bet.token == firstBet.token, MismatchedProofOfEntryBetToken(i));
            require(bet.amount == firstBet.amount, MismatchedProofOfEntryBetAmount(i));

            uint256 playerBalance = balanceOf(proofOfEntry.player, firstBet.token);
            require(
                playerBalance >= firstBet.amount,
                InsufficientPlayerFunds(proofOfEntry.player, playerBalance, firstBet.amount)
            );

            nonces[proofOfEntry.nonce] = true;
        }

        return (firstBet, signedEntriesCount);
    }

    function processPlayerResults(int8[] memory results) internal pure returns (uint256, int8, uint256) {
        int8 bestScore = type(int8).min;
        uint256 winnersCount = 0;

        uint256 resultsLength = results.length;
        for (uint256 i = 0; i < resultsLength; i++) {
            if (results[i] > bestScore) {
                bestScore = results[i];
                winnersCount = 1;
            } else if (results[i] == bestScore) {
                winnersCount++;
            }
        }

        return (resultsLength, bestScore, winnersCount);
    }

    function safeTransferToken(IERC20 token, address to, uint256 amount) internal {
        if (amount == 0) {
            return;
        }
        token.safeTransfer(to, amount);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {IUniversalSigValidator, IERC1271Wallet} from "./interfaces/IUniversalSigValidator.sol";

contract UniversalSigValidator is IUniversalSigValidator {
    bytes32 private constant ERC6492_DETECTION_SUFFIX =
        0x6492649264926492649264926492649264926492649264926492649264926492;
    bytes4 private constant ERC1271_SUCCESS = 0x1626ba7e;

    constructor() {}

    function isValidSigImpl(
        address _signer,
        bytes32 _hash,
        bytes calldata _signature,
        bool allowSideEffects,
        bool tryPrepare
    ) public returns (bool) {
        uint contractCodeLen = address(_signer).code.length;
        bytes memory sigToValidate;
        // The order here is strictly defined in https://eips.ethereum.org/EIPS/eip-6492
        // - ERC-6492 suffix check and verification first, while being permissive in case the contract is already deployed; if the contract is deployed we will check the sig against the deployed version, this allows 6492 signatures to still be validated while taking into account potential key rotation
        // - ERC-1271 verification if there's contract code
        // - finally, ecrecover
        bool isCounterfactual = bytes32(_signature[_signature.length - 32:_signature.length]) ==
            ERC6492_DETECTION_SUFFIX;
        if (isCounterfactual) {
            address create2Factory;
            bytes memory factoryCalldata;
            (create2Factory, factoryCalldata, sigToValidate) = abi.decode(
                _signature[0:_signature.length - 32],
                (address, bytes, bytes)
            );

            if (contractCodeLen == 0 || tryPrepare) {
                (bool success, bytes memory err) = create2Factory.call(factoryCalldata);
                if (!success) revert ERC6492DeployFailed(err);
            }
        } else {
            sigToValidate = _signature;
        }

        // Try ERC-1271 verification
        if (isCounterfactual || contractCodeLen > 0) {
            try IERC1271Wallet(_signer).isValidSignature(_hash, sigToValidate) returns (bytes4 magicValue) {
                bool isValid = magicValue == ERC1271_SUCCESS;

                // retry, but this time assume the prefix is a prepare call
                if (!isValid && !tryPrepare && contractCodeLen > 0) {
                    return isValidSigImpl(_signer, _hash, _signature, allowSideEffects, true);
                }

                if (contractCodeLen == 0 && isCounterfactual && !allowSideEffects) {
                    // if the call had side effects we need to return the
                    // result using a `revert` (to undo the state changes)
                    assembly {
                        mstore(0, isValid)
                        revert(31, 1)
                    }
                }

                return isValid;
            } catch (bytes memory err) {
                // retry, but this time assume the prefix is a prepare call
                if (!tryPrepare && contractCodeLen > 0) {
                    return isValidSigImpl(_signer, _hash, _signature, allowSideEffects, true);
                }

                revert ERC1271Revert(err);
            }
        }

        // ecrecover verification
        require(_signature.length == 65, "SignatureValidator#recoverSigner: invalid signature length");
        bytes32 r = bytes32(_signature[0:32]);
        bytes32 s = bytes32(_signature[32:64]);
        uint8 v = uint8(_signature[64]);
        if (v != 27 && v != 28) {
            revert("SignatureValidator: invalid signature v value");
        }
        return ecrecover(_hash, v, r, s) == _signer;
    }

    function isValidSigWithSideEffects(
        address _signer,
        bytes32 _hash,
        bytes calldata _signature
    ) external returns (bool) {
        return this.isValidSigImpl(_signer, _hash, _signature, true, false);
    }

    function isValidSig(address _signer, bytes32 _hash, bytes calldata _signature) external returns (bool) {
        try this.isValidSigImpl(_signer, _hash, _signature, false, false) returns (bool isValid) {
            return isValid;
        } catch (bytes memory error) {
            // in order to avoid side effects from the contract getting deployed, the entire call will revert with a single byte result
            uint len = error.length;
            if (len == 1) return error[0] == 0x01;
            // all other errors are simply forwarded, but in custom formats so that nothing else can revert with a single byte in the call
            else
                assembly {
                    revert(error, len)
                }
        }
    }
}

File 39 of 56 : Common.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

struct AddressInfo {
    address target;
    uint256 chainId;
}

struct ERC20Entry {
    address token;
    uint256 amount;
}

File 40 of 56 : ProofOfGame.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {ERC20Entry, AddressInfo} from "./Common.sol";

/**
 * @param player Address of a player accepting a bet
 * @param bet Bet details
 * @param nonce [ 42 bits timestamp ] ++ [ 6 bits version ] ++ [ 128 bits player id ]
 */
struct ProofOfEntry {
    address player;
    ERC20Entry bet;
    bytes22 nonce;
}

struct ProofOfEntrySigned {
    ProofOfEntry proofOfEntry;
    bytes signature;
}

struct Game {
    bytes16 id;
    bytes16 version;
    bytes32 data;
}

struct ProofOfGame {
    ProofOfEntrySigned[] entries;
    int8[] results;
    Game game;
}

struct ProofOfGameSigned {
    ProofOfGame proofOfGame;
    bytes signature;
}

struct VerifiedCompetitionDataSigned {
    ProofOfGameSigned proofOfGameSigned;
    uint256 developerCommission;
    uint256 elympicsCommission;
    AddressInfo verifyingContract;
    bytes signature;
}

File 41 of 56 : WithdrawTicket.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {ERC20Entry, AddressInfo} from "./Common.sol";

/**
 * @param player Address of a player issuing a withdraw
 * @param request Withdraw request details
 * @param verifyingContract Address details of the contract meant to validate this ticket
 * @param nonce [ 42 bits timestamp ] ++ [ 6 bits version ] ++ [ 128 bits player id ]
 * @param deadline Unix timestamp, after which the ticket won't be accepted anymore
 */
struct WithdrawTicket {
    address player;
    ERC20Entry request;
    AddressInfo verifyingContract;
    bytes22 nonce;
    uint64 deadline;
}

struct WithdrawTicketSigned {
    WithdrawTicket ticket;
    bytes signature;
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {VerifiedCompetitionDataSigned} from "../data/ProofOfGame.sol";
import {WithdrawTicketSigned} from "../data/WithdrawTicket.sol";

interface IBattleWalletErrors {
    error DeveloperTreasuryNotSet(bytes16 gameId);
    error InsufficientPlayerFunds(address player, uint256 playerFunds, uint256 requiredFunds);
    error InvalidAddress();
    error InvalidProofOfEntrySignature(uint256 index);
    error InvalidProofOfGameSignature();
    error InvalidVerifiedCompetitionDataSignature();
    error InvalidVerifyingContractAddress();
    error InvalidVerifyingContractChainId();
    error InvalidWithdrawTicketSignature();
    error MismatchedEntriesAndResultsLengths(uint256 entriesLength, uint256 resultsLength);
    /**
     * @param index Index of the first entry with bet token different than the first entry in array
     */
    error MismatchedProofOfEntryBetToken(uint256 index);
    /**
     * @param index Index of the first entry with bet amount different than the first entry in array
     */
    error MismatchedProofOfEntryBetAmount(uint256 index);
    error NonceAlreadyUsed(bytes22 nonce);
    error ProofsOfEntryNotFound();
    error TotalCommissionExceedsMaxValue(uint256 totalCommission, uint256 maxTotalCommission);
    error WithdrawTicketSubmittedPastDeadline();
}

interface IBattleWallet is IBattleWalletErrors {
    event PlayerToppedUp(address indexed player, address indexed token, uint256 amount);
    event PlayerWithdrew(address indexed player, address indexed token, uint256 amount);
    event MatchConcluded();
    event MatchAuthorityUpdated(address newMatchAuthority);
    event WithdrawAuthorityUpdated(address newWithdrawAuthority);
    event ElympicsTreasuryUpdated(address newElympicsTreasury);
    event DeveloperTreasuryUpdated(bytes16 indexed gameId, address newDeveloperTreasury);

    function topUp(address token, uint256 amount) external;

    function withdraw(WithdrawTicketSigned memory withdrawTicket) external;

    function conclude(VerifiedCompetitionDataSigned memory competitionData) external;

    function setMatchAuthority(address newMatchAuthority) external;

    function setWithdrawAuthority(address newWithdrawAuthority) external;

    function setElympicsTreasury(address newElympicsTreasury) external;

    function setDeveloperTreasury(bytes16 gameId, address developerTreasury) external;

    function balanceOf(address player, address token) external view returns (uint256);

    function isNonceUsed(bytes22 nonce) external view returns (bool);

    function version() external view returns (uint8);
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

interface IERC1271Wallet {
    function isValidSignature(bytes32 hash, bytes calldata signature) external view returns (bytes4 magicValue);
}

interface IUniversalSigValidator {
    function isValidSig(address _signer, bytes32 _hash, bytes calldata _signature) external returns (bool);

    error ERC1271Revert(bytes error);
    error ERC6492DeployFailed(bytes error);
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {ProofOfEntry, VerifiedCompetitionDataSigned} from "../data/ProofOfGame.sol";
import {WithdrawTicketSigned} from "../data/WithdrawTicket.sol";

import {IBattleWallet} from "../interfaces/IBattleWallet.sol";

import {ProofOfEntrySignatureVerification} from "../signature/ProofOfEntrySignatureVerification.sol";
import {VerifiedCompetitionSignatureVerification} from "../signature/VerifiedCompetitionSignatureVerification.sol";

contract MockBattleWallet is
    ProofOfEntrySignatureVerification,
    VerifiedCompetitionSignatureVerification,
    IBattleWallet
{
    uint8 immutable s_version = 0;

    address public immutable i_matchAuthorityAddress;

    mapping(address => mapping(address => uint256)) public s_balances;
    mapping(bytes22 => bool) private s_nonces;

    constructor(address matchAuthorityAddress) {
        i_matchAuthorityAddress = matchAuthorityAddress;
    }

    function topUp(address _token, uint256 _amount) external {
        s_balances[_token][msg.sender] += _amount;
    }

    function withdraw(WithdrawTicketSigned calldata _withdrawTicket) external {
        s_balances[_withdrawTicket.ticket.request.token][msg.sender] -= _withdrawTicket.ticket.request.amount;
    }

    function conclude(VerifiedCompetitionDataSigned calldata _competitionData) external {
        require(_competitionData.verifyingContract.target == address(this), "Invalid Proof of Game 1");
        require(_competitionData.verifyingContract.chainId == chainId(), "Invalid Proof of Game 2");
        require(verify(_competitionData, i_matchAuthorityAddress), "Invalid Proof of Game 3");
        require(verify(_competitionData.proofOfGameSigned, i_matchAuthorityAddress), "Invalid Proof of Game 4");
        ProofOfEntry[] memory entries = extractEntries(_competitionData);
        markNoncesAsUsed(entries);

        uint8 winnerIndex;
        uint8 loserIndex;
        require(
            _competitionData.proofOfGameSigned.proofOfGame.entries.length ==
                _competitionData.proofOfGameSigned.proofOfGame.results.length,
            "Only 2 v 2"
        );
        require(_competitionData.proofOfGameSigned.proofOfGame.entries.length == 2, "Only 2 vs 2");
        if (_competitionData.proofOfGameSigned.proofOfGame.results[0] == 1) {
            winnerIndex = 0;
            loserIndex = 1;
        } else if (_competitionData.proofOfGameSigned.proofOfGame.results[1] == 1) {
            winnerIndex = 1;
            loserIndex = 0;
        } else {
            return;
        }
        address winnerAddress = _competitionData.proofOfGameSigned.proofOfGame.entries[winnerIndex].proofOfEntry.player;
        address loserAddress = _competitionData.proofOfGameSigned.proofOfGame.entries[loserIndex].proofOfEntry.player;
        address token = _competitionData.proofOfGameSigned.proofOfGame.entries[0].proofOfEntry.bet.token;
        uint256 amount = _competitionData.proofOfGameSigned.proofOfGame.entries[0].proofOfEntry.bet.amount;
        require(this.balanceOf(token, loserAddress) >= amount, "Loser does not have enough token");
        s_balances[token][loserAddress] -= amount;
        s_balances[token][winnerAddress] += amount;
    }

    function setMatchAuthority(address newMatchAuthority) external {}

    function setWithdrawAuthority(address newWithdrawAuthority) external {}

    function setElympicsTreasury(address newElympicsTreasury) external {}

    function setDeveloperTreasury(bytes16 gameId, address developerTreasury) external {}

    function balanceOf(address _user, address _token) external view returns (uint256) {
        return s_balances[_token][_user];
    }

    function isNonceUsed(bytes22 _nonce) external view returns (bool) {
        return s_nonces[_nonce];
    }

    function version() external pure returns (uint8) {
        return s_version;
    }

    function extractEntries(
        VerifiedCompetitionDataSigned memory _competitionData
    ) private pure returns (ProofOfEntry[] memory) {
        ProofOfEntry[] memory result = new ProofOfEntry[](
            _competitionData.proofOfGameSigned.proofOfGame.entries.length
        );
        for (uint i = 0; i < _competitionData.proofOfGameSigned.proofOfGame.entries.length; ++i) {
            result[i] = _competitionData.proofOfGameSigned.proofOfGame.entries[i].proofOfEntry;
        }
        return result;
    }

    function markNoncesAsUsed(ProofOfEntry[] memory _entries) private {
        for (uint i = 0; i < _entries.length; ++i) {
            s_nonces[_entries[i].nonce] = true;
        }
    }

    function chainId() private view returns (uint) {
        uint256 id;
        assembly {
            id := chainid()
        }
        return id;
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {AccessControlUpgradeable} from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";

import {AddressInfo, ERC20Entry} from "../data/Common.sol";
import {VerifiedCompetitionDataSigned, ProofOfGameSigned, ProofOfGame, ProofOfEntrySigned, ProofOfEntry, Game} from "../data/ProofOfGame.sol";
import {WithdrawTicketSigned, WithdrawTicket} from "../data/WithdrawTicket.sol";

import {IBattleWallet} from "../interfaces/IBattleWallet.sol";
import {IUniversalSigValidator} from "../interfaces/IUniversalSigValidator.sol";

import {ProofOfEntrySignatureVerification} from "../signature/ProofOfEntrySignatureVerification.sol";
import {VerifiedCompetitionSignatureVerification} from "../signature/VerifiedCompetitionSignatureVerification.sol";
import {WithdrawTicketSignatureVerification} from "../signature/WithdrawTicketSignatureVerification.sol";

uint256 constant SHARE_PRECISION = 1_000_000_000; // 100%
uint256 constant MAX_TOTAL_COMMISSION = 400_000_000; // 40%

contract MockBattleWalletNextVersion is
    IBattleWallet,
    ProofOfEntrySignatureVerification,
    VerifiedCompetitionSignatureVerification,
    WithdrawTicketSignatureVerification,
    AccessControlUpgradeable
{
    using SafeERC20 for IERC20;

    bytes32 public constant AUTHORITY_MANAGER_ROLE = keccak256("AUTHORITY_MANAGER_ROLE");
    bytes32 public constant TREASURY_MANAGER_ROLE = keccak256("TREASURY_MANAGER_ROLE");

    address public matchAuthority;
    address public withdrawAuthority;

    address public elympicsTreasury;
    mapping(bytes16 gameId => address treasury) public developerTreasuries;

    mapping(address player => mapping(address token => uint256 balance)) private balances;
    mapping(bytes22 nonce => bool isNonceUsed) private nonces;

    address public signatureValidator;

    uint256 public extraVariable;

    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    function reinitializeV3() external reinitializer(3) {
        extraVariable = 69;
    }

    function topUp(address token, uint256 amount) external {
        IERC20(token).safeTransferFrom(msg.sender, address(this), amount);
        balances[msg.sender][token] += amount;
        emit PlayerToppedUp(msg.sender, token, amount);
    }

    function withdraw(WithdrawTicketSigned memory withdrawTicket) external {
        // Validate data
        WithdrawTicket memory ticket = withdrawTicket.ticket;
        AddressInfo memory verifyingContract = ticket.verifyingContract;
        ERC20Entry memory request = ticket.request;

        require(verifyingContract.target == address(this), InvalidVerifyingContractAddress());
        require(verifyingContract.chainId == block.chainid, InvalidVerifyingContractChainId());

        require(verify(withdrawTicket, withdrawAuthority), InvalidWithdrawTicketSignature());

        require(!nonces[ticket.nonce], NonceAlreadyUsed(ticket.nonce));
        require(block.timestamp <= ticket.deadline, WithdrawTicketSubmittedPastDeadline());

        require(
            balanceOf(ticket.player, request.token) >= request.amount,
            InsufficientPlayerFunds(ticket.player, balanceOf(ticket.player, request.token), request.amount)
        );

        // Process withdraw
        nonces[ticket.nonce] = true;
        balances[ticket.player][request.token] -= request.amount;

        IERC20(request.token).safeTransfer(ticket.player, request.amount);

        emit PlayerWithdrew(ticket.player, request.token, request.amount);
    }

    function conclude(VerifiedCompetitionDataSigned memory competitionData) external {
        // Validate data
        ProofOfGameSigned memory signedProofOfGame = competitionData.proofOfGameSigned;
        AddressInfo memory verifyingContract = competitionData.verifyingContract;
        ProofOfGame memory proofOfGame = signedProofOfGame.proofOfGame;
        Game memory game = proofOfGame.game;

        require(verifyingContract.target == address(this), InvalidVerifyingContractAddress());
        require(verifyingContract.chainId == block.chainid, InvalidVerifyingContractChainId());

        require(verify(competitionData, matchAuthority), InvalidVerifiedCompetitionDataSignature());
        require(verify(signedProofOfGame, matchAuthority), InvalidProofOfGameSignature());

        require(
            competitionData.elympicsCommission + competitionData.developerCommission <= MAX_TOTAL_COMMISSION,
            TotalCommissionExceedsMaxValue(
                competitionData.elympicsCommission + competitionData.developerCommission,
                MAX_TOTAL_COMMISSION
            )
        );

        bytes16 gameId = game.id;
        require(developerTreasuries[gameId] != address(0), DeveloperTreasuryNotSet(gameId));

        // Process player entries and results
        (ERC20Entry memory bet, uint256 signedEntriesCount) = processPlayerEntries(proofOfGame.entries);
        (uint256 resultsLength, int8 bestScore, uint256 winnersCount) = processPlayerResults(proofOfGame.results);
        require(
            signedEntriesCount == resultsLength,
            MismatchedEntriesAndResultsLengths(signedEntriesCount, resultsLength)
        );

        // Compute balance changes
        uint256 totalPrizePool = bet.amount * signedEntriesCount;

        uint256 elympicsCommissionValue = (totalPrizePool * competitionData.elympicsCommission) / SHARE_PRECISION;
        uint256 developerCommissionValue = (totalPrizePool * competitionData.developerCommission) / SHARE_PRECISION;
        uint256 totalCommissionValue = elympicsCommissionValue + developerCommissionValue;

        uint256 winnersPrizePool = totalPrizePool - totalCommissionValue;
        uint256 winnersPrizeShare = winnersPrizePool / winnersCount; // winnersCount >= 1

        uint256 leftover = winnersPrizePool % winnersCount;
        bool shouldCreditLeftover = leftover > 0 ? true : false;

        // Update balances
        ProofOfEntrySigned[] memory entries = proofOfGame.entries;
        int8[] memory results = proofOfGame.results;
        for (uint256 i = 0; i < resultsLength; i++) {
            address player = entries[i].proofOfEntry.player;
            int8 result = results[i];

            if (result == bestScore) {
                if (winnersPrizeShare >= bet.amount) {
                    balances[player][bet.token] += winnersPrizeShare - bet.amount;
                } else {
                    balances[player][bet.token] -= bet.amount - winnersPrizeShare;
                }
                if (shouldCreditLeftover) {
                    shouldCreditLeftover = false;
                    balances[player][bet.token] += leftover;
                }
            } else {
                balances[player][bet.token] -= bet.amount;
            }
        }

        safeTransferToken(IERC20(bet.token), elympicsTreasury, elympicsCommissionValue);
        safeTransferToken(IERC20(bet.token), developerTreasuries[gameId], developerCommissionValue);

        emit MatchConcluded();
    }

    function setMatchAuthority(address newMatchAuthority) external onlyRole(AUTHORITY_MANAGER_ROLE) {
        require(newMatchAuthority != address(0), InvalidAddress());
        matchAuthority = newMatchAuthority;
        emit MatchAuthorityUpdated(newMatchAuthority);
    }

    function setWithdrawAuthority(address newWithdrawAuthority) external onlyRole(AUTHORITY_MANAGER_ROLE) {
        require(newWithdrawAuthority != address(0), InvalidAddress());
        withdrawAuthority = newWithdrawAuthority;
        emit WithdrawAuthorityUpdated(newWithdrawAuthority);
    }

    function setElympicsTreasury(address newElympicsTreasury) external onlyRole(TREASURY_MANAGER_ROLE) {
        require(newElympicsTreasury != address(0), InvalidAddress());
        elympicsTreasury = newElympicsTreasury;
        emit ElympicsTreasuryUpdated(newElympicsTreasury);
    }

    function setDeveloperTreasury(bytes16 gameId, address developerTreasury) external onlyRole(TREASURY_MANAGER_ROLE) {
        developerTreasuries[gameId] = developerTreasury;
        emit DeveloperTreasuryUpdated(gameId, developerTreasury);
    }

    function balanceOf(address player, address token) public view returns (uint256) {
        return balances[player][token];
    }

    function isNonceUsed(bytes22 nonce) public view returns (bool) {
        return nonces[nonce];
    }

    function version() external view returns (uint8) {
        return uint8(_getInitializedVersion());
    }

    function processPlayerEntries(
        ProofOfEntrySigned[] memory signedEntries
    ) internal returns (ERC20Entry memory, uint256) {
        uint256 signedEntriesCount = signedEntries.length;
        require(signedEntriesCount > 0, ProofsOfEntryNotFound());

        ERC20Entry memory firstBet = signedEntries[0].proofOfEntry.bet;
        for (uint256 i = 0; i < signedEntriesCount; i++) {
            ProofOfEntrySigned memory signedProofOfEntry = signedEntries[i];
            ProofOfEntry memory proofOfEntry = signedProofOfEntry.proofOfEntry;
            ERC20Entry memory bet = proofOfEntry.bet;

            require(
                IUniversalSigValidator(signatureValidator).isValidSig(
                    proofOfEntry.player,
                    _hashTypedDataV4(keccak256(encode(proofOfEntry))),
                    signedProofOfEntry.signature
                ),
                InvalidProofOfEntrySignature(i)
            );
            require(!nonces[proofOfEntry.nonce], NonceAlreadyUsed(proofOfEntry.nonce));
            require(bet.token == firstBet.token, MismatchedProofOfEntryBetToken(i));
            require(bet.amount == firstBet.amount, MismatchedProofOfEntryBetAmount(i));

            uint256 playerBalance = balanceOf(proofOfEntry.player, firstBet.token);
            require(
                playerBalance >= firstBet.amount,
                InsufficientPlayerFunds(proofOfEntry.player, playerBalance, firstBet.amount)
            );

            nonces[proofOfEntry.nonce] = true;
        }

        return (firstBet, signedEntriesCount);
    }

    function processPlayerResults(int8[] memory results) internal pure returns (uint256, int8, uint256) {
        int8 bestScore = type(int8).min;
        uint256 winnersCount = 0;

        uint256 resultsLength = results.length;
        for (uint256 i = 0; i < resultsLength; i++) {
            if (results[i] > bestScore) {
                bestScore = results[i];
                winnersCount = 1;
            } else if (results[i] == bestScore) {
                winnersCount++;
            }
        }

        return (resultsLength, bestScore, winnersCount);
    }

    function safeTransferToken(IERC20 token, address to, uint256 amount) internal {
        if (amount == 0) {
            return;
        }
        token.safeTransfer(to, amount);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {IERC1271} from "@openzeppelin/contracts/interfaces/IERC1271.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

contract MockERC1271 is IERC1271 {
    using ECDSA for bytes32;

    error Unauthorized();
    error Uninitialized();
    error TransactionExecutionFailed();

    bytes4 internal constant MAGIC_VALUE = 0x1626ba7e;

    address public owner;
    bool public readyToValidate;

    constructor(address _owner, bool _readyToValidate) {
        owner = _owner;
        readyToValidate = _readyToValidate;
    }

    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue) {
        require(readyToValidate, Uninitialized());
        return hash.recover(signature) == owner ? MAGIC_VALUE : bytes4(0);
    }

    function executeTransaction(address to, bytes memory data) external {
        require(msg.sender == owner, Unauthorized());

        (bool success, ) = to.call(data);
        require(success, TransactionExecutionFailed());
    }

    function initialize() external {
        readyToValidate = true;
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";

contract MockToken is ERC20 {
    constructor(string memory name, string memory symbol) ERC20(name, symbol) {}

    function mint(uint256 amount) external {
        _mint(msg.sender, amount);
    }
}

File 48 of 56 : Proxies.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

// solhint-disable-next-line no-unused-import
import {ProxyAdmin} from "@openzeppelin/contracts/proxy/transparent/ProxyAdmin.sol";

// solhint-disable-next-line no-unused-import
import {TransparentUpgradeableProxy} from "@openzeppelin/contracts/proxy/transparent/TransparentUpgradeableProxy.sol";

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {AccessControlUpgradeable} from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";

import {AddressInfo, ERC20Entry} from "../data/Common.sol";
import {VerifiedCompetitionDataSigned, ProofOfGameSigned, ProofOfGame, ProofOfEntrySigned, ProofOfEntry, Game} from "../data/ProofOfGame.sol";
import {WithdrawTicketSigned, WithdrawTicket} from "../data/WithdrawTicket.sol";

import {IBattleWallet} from "../interfaces/IBattleWallet.sol";

import {ProofOfEntrySignatureVerification} from "../signature/ProofOfEntrySignatureVerification.sol";
import {VerifiedCompetitionSignatureVerification} from "../signature/VerifiedCompetitionSignatureVerification.sol";
import {WithdrawTicketSignatureVerification} from "../signature/WithdrawTicketSignatureVerification.sol";

uint256 constant SHARE_PRECISION = 1_000_000_000; // 100%
uint256 constant MAX_TOTAL_COMMISSION = 400_000_000; // 40%

contract BattleWallet_v1 is
    IBattleWallet,
    ProofOfEntrySignatureVerification,
    VerifiedCompetitionSignatureVerification,
    WithdrawTicketSignatureVerification,
    AccessControlUpgradeable
{
    using SafeERC20 for IERC20;

    bytes32 public constant AUTHORITY_MANAGER_ROLE = keccak256("AUTHORITY_MANAGER_ROLE");
    bytes32 public constant TREASURY_MANAGER_ROLE = keccak256("TREASURY_MANAGER_ROLE");

    address public matchAuthority;
    address public withdrawAuthority;

    address public elympicsTreasury;
    mapping(bytes16 gameId => address treasury) public developerTreasuries;

    mapping(address player => mapping(address token => uint256 balance)) private balances;
    mapping(bytes22 nonce => bool isNonceUsed) private nonces;

    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    function initialize(
        address _admin,
        address _matchAuthority,
        address _withdrawAuthority,
        address _elympicsTreasury
    ) external initializer {
        require(_matchAuthority != address(0), InvalidAddress());
        require(_withdrawAuthority != address(0), InvalidAddress());
        require(_elympicsTreasury != address(0), InvalidAddress());

        __ProofOfEntrySignatureVerification_init();
        __AccessControl_init();

        _grantRole(DEFAULT_ADMIN_ROLE, _admin);

        matchAuthority = _matchAuthority;
        withdrawAuthority = _withdrawAuthority;

        elympicsTreasury = _elympicsTreasury;
    }

    function topUp(address token, uint256 amount) external {
        IERC20(token).safeTransferFrom(msg.sender, address(this), amount);
        balances[msg.sender][token] += amount;
        emit PlayerToppedUp(msg.sender, token, amount);
    }

    function withdraw(WithdrawTicketSigned memory withdrawTicket) external {
        // Validate data
        WithdrawTicket memory ticket = withdrawTicket.ticket;
        AddressInfo memory verifyingContract = ticket.verifyingContract;
        ERC20Entry memory request = ticket.request;

        require(verifyingContract.target == address(this), InvalidVerifyingContractAddress());
        require(verifyingContract.chainId == block.chainid, InvalidVerifyingContractChainId());

        require(verify(withdrawTicket, withdrawAuthority), InvalidWithdrawTicketSignature());

        require(!nonces[ticket.nonce], NonceAlreadyUsed(ticket.nonce));
        require(block.timestamp <= ticket.deadline, WithdrawTicketSubmittedPastDeadline());

        require(
            balanceOf(ticket.player, request.token) >= request.amount,
            InsufficientPlayerFunds(ticket.player, balanceOf(ticket.player, request.token), request.amount)
        );

        // Process withdraw
        nonces[ticket.nonce] = true;
        balances[ticket.player][request.token] -= request.amount;

        IERC20(request.token).safeTransfer(ticket.player, request.amount);

        emit PlayerWithdrew(ticket.player, request.token, request.amount);
    }

    function conclude(VerifiedCompetitionDataSigned memory competitionData) external {
        // Validate data
        ProofOfGameSigned memory signedProofOfGame = competitionData.proofOfGameSigned;
        AddressInfo memory verifyingContract = competitionData.verifyingContract;
        ProofOfGame memory proofOfGame = signedProofOfGame.proofOfGame;
        Game memory game = proofOfGame.game;

        require(verifyingContract.target == address(this), InvalidVerifyingContractAddress());
        require(verifyingContract.chainId == block.chainid, InvalidVerifyingContractChainId());

        require(verify(competitionData, matchAuthority), InvalidVerifiedCompetitionDataSignature());
        require(verify(signedProofOfGame, matchAuthority), InvalidProofOfGameSignature());

        require(
            competitionData.elympicsCommission + competitionData.developerCommission <= MAX_TOTAL_COMMISSION,
            TotalCommissionExceedsMaxValue(
                competitionData.elympicsCommission + competitionData.developerCommission,
                MAX_TOTAL_COMMISSION
            )
        );

        bytes16 gameId = game.id;
        require(developerTreasuries[gameId] != address(0), DeveloperTreasuryNotSet(gameId));

        // Process player entries and results
        (ERC20Entry memory bet, uint256 signedEntriesCount) = processPlayerEntries(proofOfGame.entries);
        (uint256 resultsLength, int8 bestScore, uint256 winnersCount) = processPlayerResults(proofOfGame.results);
        require(
            signedEntriesCount == resultsLength,
            MismatchedEntriesAndResultsLengths(signedEntriesCount, resultsLength)
        );

        // Compute balance changes
        uint256 totalPrizePool = bet.amount * signedEntriesCount;

        uint256 elympicsCommissionValue = (totalPrizePool * competitionData.elympicsCommission) / SHARE_PRECISION;
        uint256 developerCommissionValue = (totalPrizePool * competitionData.developerCommission) / SHARE_PRECISION;
        uint256 totalCommissionValue = elympicsCommissionValue + developerCommissionValue;

        uint256 winnersPrizePool = totalPrizePool - totalCommissionValue;
        uint256 winnersPrizeShare = winnersPrizePool / winnersCount; // winnersCount >= 1

        uint256 leftover = winnersPrizePool % winnersCount;
        bool shouldCreditLeftover = leftover > 0 ? true : false;

        // Update balances
        ProofOfEntrySigned[] memory entries = proofOfGame.entries;
        int8[] memory results = proofOfGame.results;
        for (uint256 i = 0; i < resultsLength; i++) {
            address player = entries[i].proofOfEntry.player;
            int8 result = results[i];

            if (result == bestScore) {
                if (winnersPrizeShare >= bet.amount) {
                    balances[player][bet.token] += winnersPrizeShare - bet.amount;
                } else {
                    balances[player][bet.token] -= bet.amount - winnersPrizeShare;
                }
                if (shouldCreditLeftover) {
                    shouldCreditLeftover = false;
                    balances[player][bet.token] += leftover;
                }
            } else {
                balances[player][bet.token] -= bet.amount;
            }
        }

        safeTransferToken(IERC20(bet.token), elympicsTreasury, elympicsCommissionValue);
        safeTransferToken(IERC20(bet.token), developerTreasuries[gameId], developerCommissionValue);

        emit MatchConcluded();
    }

    function setMatchAuthority(address newMatchAuthority) external onlyRole(AUTHORITY_MANAGER_ROLE) {
        require(newMatchAuthority != address(0), InvalidAddress());
        matchAuthority = newMatchAuthority;
        emit MatchAuthorityUpdated(newMatchAuthority);
    }

    function setWithdrawAuthority(address newWithdrawAuthority) external onlyRole(AUTHORITY_MANAGER_ROLE) {
        require(newWithdrawAuthority != address(0), InvalidAddress());
        withdrawAuthority = newWithdrawAuthority;
        emit WithdrawAuthorityUpdated(newWithdrawAuthority);
    }

    function setElympicsTreasury(address newElympicsTreasury) external onlyRole(TREASURY_MANAGER_ROLE) {
        require(newElympicsTreasury != address(0), InvalidAddress());
        elympicsTreasury = newElympicsTreasury;
        emit ElympicsTreasuryUpdated(newElympicsTreasury);
    }

    function setDeveloperTreasury(bytes16 gameId, address developerTreasury) external onlyRole(TREASURY_MANAGER_ROLE) {
        developerTreasuries[gameId] = developerTreasury;
        emit DeveloperTreasuryUpdated(gameId, developerTreasury);
    }

    function balanceOf(address player, address token) public view returns (uint256) {
        return balances[player][token];
    }

    function isNonceUsed(bytes22 nonce) public view returns (bool) {
        return nonces[nonce];
    }

    function version() external view returns (uint8) {
        return uint8(_getInitializedVersion());
    }

    function processPlayerEntries(
        ProofOfEntrySigned[] memory signedEntries
    ) internal returns (ERC20Entry memory, uint256) {
        uint256 signedEntriesCount = signedEntries.length;
        require(signedEntriesCount > 0, ProofsOfEntryNotFound());

        ERC20Entry memory firstBet = signedEntries[0].proofOfEntry.bet;
        for (uint256 i = 0; i < signedEntriesCount; i++) {
            ProofOfEntrySigned memory signedProofOfEntry = signedEntries[i];
            ProofOfEntry memory proofOfEntry = signedProofOfEntry.proofOfEntry;
            ERC20Entry memory bet = proofOfEntry.bet;

            require(
                verify(proofOfEntry, signedProofOfEntry.signature, proofOfEntry.player),
                InvalidProofOfEntrySignature(i)
            );
            require(!nonces[proofOfEntry.nonce], NonceAlreadyUsed(proofOfEntry.nonce));
            require(bet.token == firstBet.token, MismatchedProofOfEntryBetToken(i));
            require(bet.amount == firstBet.amount, MismatchedProofOfEntryBetAmount(i));

            uint256 playerBalance = balanceOf(proofOfEntry.player, firstBet.token);
            require(
                playerBalance >= firstBet.amount,
                InsufficientPlayerFunds(proofOfEntry.player, playerBalance, firstBet.amount)
            );

            nonces[proofOfEntry.nonce] = true;
        }

        return (firstBet, signedEntriesCount);
    }

    function processPlayerResults(int8[] memory results) internal pure returns (uint256, int8, uint256) {
        int8 bestScore = type(int8).min;
        uint256 winnersCount = 0;

        uint256 resultsLength = results.length;
        for (uint256 i = 0; i < resultsLength; i++) {
            if (results[i] > bestScore) {
                bestScore = results[i];
                winnersCount = 1;
            } else if (results[i] == bestScore) {
                winnersCount++;
            }
        }

        return (resultsLength, bestScore, winnersCount);
    }

    function safeTransferToken(IERC20 token, address to, uint256 amount) internal {
        if (amount == 0) {
            return;
        }
        token.safeTransfer(to, amount);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {AccessControlUpgradeable} from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";

import {AddressInfo, ERC20Entry} from "../data/Common.sol";
import {VerifiedCompetitionDataSigned, ProofOfGameSigned, ProofOfGame, ProofOfEntrySigned, ProofOfEntry, Game} from "../data/ProofOfGame.sol";
import {WithdrawTicketSigned, WithdrawTicket} from "../data/WithdrawTicket.sol";

import {IBattleWallet} from "../interfaces/IBattleWallet.sol";
import {IUniversalSigValidator} from "../interfaces/IUniversalSigValidator.sol";

import {ProofOfEntrySignatureVerification} from "../signature/ProofOfEntrySignatureVerification.sol";
import {VerifiedCompetitionSignatureVerification} from "../signature/VerifiedCompetitionSignatureVerification.sol";
import {WithdrawTicketSignatureVerification} from "../signature/WithdrawTicketSignatureVerification.sol";

uint256 constant SHARE_PRECISION = 1_000_000_000; // 100%
uint256 constant MAX_TOTAL_COMMISSION = 400_000_000; // 40%

contract BattleWallet_v2 is
    IBattleWallet,
    ProofOfEntrySignatureVerification,
    VerifiedCompetitionSignatureVerification,
    WithdrawTicketSignatureVerification,
    AccessControlUpgradeable
{
    using SafeERC20 for IERC20;

    bytes32 public constant AUTHORITY_MANAGER_ROLE = keccak256("AUTHORITY_MANAGER_ROLE");
    bytes32 public constant TREASURY_MANAGER_ROLE = keccak256("TREASURY_MANAGER_ROLE");

    address public matchAuthority;
    address public withdrawAuthority;

    address public elympicsTreasury;
    mapping(bytes16 gameId => address treasury) public developerTreasuries;

    mapping(address player => mapping(address token => uint256 balance)) private balances;
    mapping(bytes22 nonce => bool isNonceUsed) private nonces;

    address public signatureValidator;

    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    function reinitializeV2(address _signatureValidator) external reinitializer(2) {
        require(_signatureValidator != address(0), InvalidAddress());
        signatureValidator = _signatureValidator;
    }

    function topUp(address token, uint256 amount) external {
        IERC20(token).safeTransferFrom(msg.sender, address(this), amount);
        balances[msg.sender][token] += amount;
        emit PlayerToppedUp(msg.sender, token, amount);
    }

    function withdraw(WithdrawTicketSigned memory withdrawTicket) external {
        // Validate data
        WithdrawTicket memory ticket = withdrawTicket.ticket;
        AddressInfo memory verifyingContract = ticket.verifyingContract;
        ERC20Entry memory request = ticket.request;

        require(verifyingContract.target == address(this), InvalidVerifyingContractAddress());
        require(verifyingContract.chainId == block.chainid, InvalidVerifyingContractChainId());

        require(verify(withdrawTicket, withdrawAuthority), InvalidWithdrawTicketSignature());

        require(!nonces[ticket.nonce], NonceAlreadyUsed(ticket.nonce));
        require(block.timestamp <= ticket.deadline, WithdrawTicketSubmittedPastDeadline());

        require(
            balanceOf(ticket.player, request.token) >= request.amount,
            InsufficientPlayerFunds(ticket.player, balanceOf(ticket.player, request.token), request.amount)
        );

        // Process withdraw
        nonces[ticket.nonce] = true;
        balances[ticket.player][request.token] -= request.amount;

        IERC20(request.token).safeTransfer(ticket.player, request.amount);

        emit PlayerWithdrew(ticket.player, request.token, request.amount);
    }

    function conclude(VerifiedCompetitionDataSigned memory competitionData) external {
        // Validate data
        ProofOfGameSigned memory signedProofOfGame = competitionData.proofOfGameSigned;
        AddressInfo memory verifyingContract = competitionData.verifyingContract;
        ProofOfGame memory proofOfGame = signedProofOfGame.proofOfGame;
        Game memory game = proofOfGame.game;

        require(verifyingContract.target == address(this), InvalidVerifyingContractAddress());
        require(verifyingContract.chainId == block.chainid, InvalidVerifyingContractChainId());

        require(verify(competitionData, matchAuthority), InvalidVerifiedCompetitionDataSignature());
        require(verify(signedProofOfGame, matchAuthority), InvalidProofOfGameSignature());

        require(
            competitionData.elympicsCommission + competitionData.developerCommission <= MAX_TOTAL_COMMISSION,
            TotalCommissionExceedsMaxValue(
                competitionData.elympicsCommission + competitionData.developerCommission,
                MAX_TOTAL_COMMISSION
            )
        );

        bytes16 gameId = game.id;
        require(developerTreasuries[gameId] != address(0), DeveloperTreasuryNotSet(gameId));

        // Process player entries and results
        (ERC20Entry memory bet, uint256 signedEntriesCount) = processPlayerEntries(proofOfGame.entries);
        (uint256 resultsLength, int8 bestScore, uint256 winnersCount) = processPlayerResults(proofOfGame.results);
        require(
            signedEntriesCount == resultsLength,
            MismatchedEntriesAndResultsLengths(signedEntriesCount, resultsLength)
        );

        // Compute balance changes
        uint256 totalPrizePool = bet.amount * signedEntriesCount;

        uint256 elympicsCommissionValue = (totalPrizePool * competitionData.elympicsCommission) / SHARE_PRECISION;
        uint256 developerCommissionValue = (totalPrizePool * competitionData.developerCommission) / SHARE_PRECISION;
        uint256 totalCommissionValue = elympicsCommissionValue + developerCommissionValue;

        uint256 winnersPrizePool = totalPrizePool - totalCommissionValue;
        uint256 winnersPrizeShare = winnersPrizePool / winnersCount; // winnersCount >= 1

        uint256 leftover = winnersPrizePool % winnersCount;
        bool shouldCreditLeftover = leftover > 0 ? true : false;

        // Update balances
        ProofOfEntrySigned[] memory entries = proofOfGame.entries;
        int8[] memory results = proofOfGame.results;
        for (uint256 i = 0; i < resultsLength; i++) {
            address player = entries[i].proofOfEntry.player;
            int8 result = results[i];

            if (result == bestScore) {
                if (winnersPrizeShare >= bet.amount) {
                    balances[player][bet.token] += winnersPrizeShare - bet.amount;
                } else {
                    balances[player][bet.token] -= bet.amount - winnersPrizeShare;
                }
                if (shouldCreditLeftover) {
                    shouldCreditLeftover = false;
                    balances[player][bet.token] += leftover;
                }
            } else {
                balances[player][bet.token] -= bet.amount;
            }
        }

        safeTransferToken(IERC20(bet.token), elympicsTreasury, elympicsCommissionValue);
        safeTransferToken(IERC20(bet.token), developerTreasuries[gameId], developerCommissionValue);

        emit MatchConcluded();
    }

    function setMatchAuthority(address newMatchAuthority) external onlyRole(AUTHORITY_MANAGER_ROLE) {
        require(newMatchAuthority != address(0), InvalidAddress());
        matchAuthority = newMatchAuthority;
        emit MatchAuthorityUpdated(newMatchAuthority);
    }

    function setWithdrawAuthority(address newWithdrawAuthority) external onlyRole(AUTHORITY_MANAGER_ROLE) {
        require(newWithdrawAuthority != address(0), InvalidAddress());
        withdrawAuthority = newWithdrawAuthority;
        emit WithdrawAuthorityUpdated(newWithdrawAuthority);
    }

    function setElympicsTreasury(address newElympicsTreasury) external onlyRole(TREASURY_MANAGER_ROLE) {
        require(newElympicsTreasury != address(0), InvalidAddress());
        elympicsTreasury = newElympicsTreasury;
        emit ElympicsTreasuryUpdated(newElympicsTreasury);
    }

    function setDeveloperTreasury(bytes16 gameId, address developerTreasury) external onlyRole(TREASURY_MANAGER_ROLE) {
        developerTreasuries[gameId] = developerTreasury;
        emit DeveloperTreasuryUpdated(gameId, developerTreasury);
    }

    function balanceOf(address player, address token) public view returns (uint256) {
        return balances[player][token];
    }

    function isNonceUsed(bytes22 nonce) public view returns (bool) {
        return nonces[nonce];
    }

    function version() external view returns (uint8) {
        return uint8(_getInitializedVersion());
    }

    function processPlayerEntries(
        ProofOfEntrySigned[] memory signedEntries
    ) internal returns (ERC20Entry memory, uint256) {
        uint256 signedEntriesCount = signedEntries.length;
        require(signedEntriesCount > 0, ProofsOfEntryNotFound());

        ERC20Entry memory firstBet = signedEntries[0].proofOfEntry.bet;
        for (uint256 i = 0; i < signedEntriesCount; i++) {
            ProofOfEntrySigned memory signedProofOfEntry = signedEntries[i];
            ProofOfEntry memory proofOfEntry = signedProofOfEntry.proofOfEntry;
            ERC20Entry memory bet = proofOfEntry.bet;

            require(
                IUniversalSigValidator(signatureValidator).isValidSig(
                    proofOfEntry.player,
                    _hashTypedDataV4(keccak256(encode(proofOfEntry))),
                    signedProofOfEntry.signature
                ),
                InvalidProofOfEntrySignature(i)
            );
            require(!nonces[proofOfEntry.nonce], NonceAlreadyUsed(proofOfEntry.nonce));
            require(bet.token == firstBet.token, MismatchedProofOfEntryBetToken(i));
            require(bet.amount == firstBet.amount, MismatchedProofOfEntryBetAmount(i));

            uint256 playerBalance = balanceOf(proofOfEntry.player, firstBet.token);
            require(
                playerBalance >= firstBet.amount,
                InsufficientPlayerFunds(proofOfEntry.player, playerBalance, firstBet.amount)
            );

            nonces[proofOfEntry.nonce] = true;
        }

        return (firstBet, signedEntriesCount);
    }

    function processPlayerResults(int8[] memory results) internal pure returns (uint256, int8, uint256) {
        int8 bestScore = type(int8).min;
        uint256 winnersCount = 0;

        uint256 resultsLength = results.length;
        for (uint256 i = 0; i < resultsLength; i++) {
            if (results[i] > bestScore) {
                bestScore = results[i];
                winnersCount = 1;
            } else if (results[i] == bestScore) {
                winnersCount++;
            }
        }

        return (resultsLength, bestScore, winnersCount);
    }

    function safeTransferToken(IERC20 token, address to, uint256 amount) internal {
        if (amount == 0) {
            return;
        }
        token.safeTransfer(to, amount);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {ERC20Entry, AddressInfo} from "../data/ProofOfGame.sol";
import {OffChainSignatureVerification} from "./OffChainSignatureVerification.sol";

contract CommonSignatureVerification is OffChainSignatureVerification {
    function packErc20Entry(ERC20Entry memory entry) public pure returns (bytes memory) {
        return abi.encodePacked(entry.token, entry.amount);
    }

    function packAddressInfo(AddressInfo memory addressInfo) public pure returns (bytes memory) {
        return abi.encodePacked(addressInfo.target, addressInfo.chainId);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

abstract contract OffChainSignatureVerification {
    function recoverSigner(bytes32 ethSignedMessageHash, bytes memory signature) public pure returns (address) {
        (bytes32 r, bytes32 s, uint8 v) = splitSignature(signature);

        return ecrecover(ethSignedMessageHash, v, r, s);
    }

    function getEthSignedDataHash(bytes32 messageHash) public pure returns (bytes32) {
        /*
        Signature is produced by signing a keccak256 hash with the following format:
        "\x19Ethereum Signed Message\n" + len(msg) + msg
        */
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", messageHash));
    }

    function splitSignature(bytes memory sig) internal pure returns (bytes32 r, bytes32 s, uint8 v) {
        require(sig.length == 65, "Invalid signature");

        assembly {
            /*
            First 32 bytes stores the length of the signature

            add(sig, 32) = pointer of sig + 32
            effectively, skips first 32 bytes of signature

            mload(p) loads next 32 bytes starting at the memory address p into memory
            */

            // first 32 bytes, after the length prefix
            r := mload(add(sig, 32))
            // second 32 bytes
            s := mload(add(sig, 64))
            // final byte (first byte of the next 32 bytes)
            v := byte(0, mload(add(sig, 96)))
        }

        // implicitly return (r, s, v)
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {EIP712Upgradeable} from "@openzeppelin/contracts-upgradeable/utils/cryptography/EIP712Upgradeable.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

import {ProofOfEntry, ERC20Entry} from "../data/ProofOfGame.sol";

abstract contract ProofOfEntrySignatureVerification is EIP712Upgradeable {
    using ECDSA for bytes32;

    bytes32 public constant PROOF_OF_ENTRY_TYPEHASH =
        keccak256("ProofOfEntry(address player,ERC20Entry bet,bytes22 nonce)ERC20Entry(address token,uint256 amount)");
    bytes32 public constant ERC20_ENTRY_TYPEHASH = keccak256("ERC20Entry(address token,uint256 amount)");

    function __ProofOfEntrySignatureVerification_init() internal onlyInitializing {
        __EIP712_init("ElympicsProofOfEntry", "2");
    }

    function verify(
        ProofOfEntry memory proofOfEntry,
        bytes memory signature,
        address signer
    ) public view returns (bool) {
        return recoverSigner(proofOfEntry, signature) == signer;
    }

    function recoverSigner(ProofOfEntry memory proofOfEntry, bytes memory signature) public view returns (address) {
        return _hashTypedDataV4(keccak256(encode(proofOfEntry))).recover(signature);
    }

    function encode(ProofOfEntry memory proofOfEntry) public pure returns (bytes memory) {
        return
            abi.encode(
                PROOF_OF_ENTRY_TYPEHASH,
                proofOfEntry.player,
                keccak256(encode(proofOfEntry.bet)),
                proofOfEntry.nonce
            );
    }

    function encode(ERC20Entry memory entry) public pure returns (bytes memory) {
        return abi.encode(ERC20_ENTRY_TYPEHASH, entry.token, entry.amount);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {ProofOfGameSigned, ProofOfGame, ProofOfEntrySigned, ProofOfEntry, Game} from "../data/ProofOfGame.sol";
import {CommonSignatureVerification} from "./CommonSignatureVerification.sol";

contract ProofOfGameSignatureVerification is CommonSignatureVerification {
    function verify(ProofOfGameSigned memory proofOfGameSigned, address signer) public pure returns (bool) {
        bytes32 messageHash = getProofOfGameDataHash(proofOfGameSigned.proofOfGame);
        bytes32 ethSignedMessageHash = getEthSignedDataHash(messageHash);
        return recoverSigner(ethSignedMessageHash, proofOfGameSigned.signature) == signer;
    }

    function getProofOfGameDataHash(ProofOfGame memory proofOfGame) public pure returns (bytes32) {
        return keccak256(packProofOfGame(proofOfGame));
    }

    function packProofOfGame(ProofOfGame memory proofOfGame) public pure returns (bytes memory) {
        bytes memory output;

        for (uint256 i = 0; i < proofOfGame.entries.length; ++i) {
            output = abi.encodePacked(output, packProofOfEntrySigned(proofOfGame.entries[i]));
        }
        for (uint256 i = 0; i < proofOfGame.results.length; ++i) {
            output = abi.encodePacked(output, proofOfGame.results[i]);
        }
        output = abi.encodePacked(output, packGame(proofOfGame.game));

        return output;
    }

    function packProofOfEntrySigned(ProofOfEntrySigned memory proofOfEntrySigned) internal pure returns (bytes memory) {
        return abi.encodePacked(packProofOfEntry(proofOfEntrySigned.proofOfEntry), proofOfEntrySigned.signature);
    }

    function packProofOfEntry(ProofOfEntry memory proofOfEntry) public pure returns (bytes memory) {
        return abi.encodePacked(proofOfEntry.player, packErc20Entry(proofOfEntry.bet), proofOfEntry.nonce);
    }

    function packGame(Game memory game) public pure returns (bytes memory) {
        return abi.encodePacked(game.id, game.version, game.data);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {VerifiedCompetitionDataSigned, ProofOfGameSigned} from "../data/ProofOfGame.sol";
import {ProofOfGameSignatureVerification} from "./ProofOfGameSignatureVerification.sol";

contract VerifiedCompetitionSignatureVerification is ProofOfGameSignatureVerification {
    function verify(VerifiedCompetitionDataSigned memory data, address signer) public pure returns (bool) {
        bytes32 messageHash = getVerifiedCompetitionDataHash(data);
        bytes32 ethSignedMessageHash = getEthSignedDataHash(messageHash);
        return recoverSigner(ethSignedMessageHash, data.signature) == signer;
    }

    function getVerifiedCompetitionDataHash(
        VerifiedCompetitionDataSigned memory competitionData
    ) public pure returns (bytes32) {
        return keccak256(packVerifiedCompetitionData(competitionData));
    }

    function packProofOfGameSigned(ProofOfGameSigned memory proofOfGameSigned) internal pure returns (bytes memory) {
        return abi.encodePacked(packProofOfGame(proofOfGameSigned.proofOfGame), proofOfGameSigned.signature);
    }

    function packVerifiedCompetitionData(
        VerifiedCompetitionDataSigned memory competitionData
    ) public pure returns (bytes memory) {
        return
            abi.encodePacked(
                packProofOfGameSigned(competitionData.proofOfGameSigned),
                competitionData.developerCommission,
                competitionData.elympicsCommission,
                packAddressInfo(competitionData.verifyingContract)
            );
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {WithdrawTicketSigned, WithdrawTicket} from "../data/WithdrawTicket.sol";
import {CommonSignatureVerification} from "./CommonSignatureVerification.sol";

contract WithdrawTicketSignatureVerification is CommonSignatureVerification {
    function verify(WithdrawTicketSigned memory withdrawTicketSigned, address signer) public pure returns (bool) {
        bytes32 messageHash = getWithdrawTicketHash(withdrawTicketSigned.ticket);
        bytes32 ethSignedMessageHash = getEthSignedDataHash(messageHash);
        return recoverSigner(ethSignedMessageHash, withdrawTicketSigned.signature) == signer;
    }

    function getWithdrawTicketHash(WithdrawTicket memory withdrawTicket) public pure returns (bytes32) {
        return keccak256(packWithdrawTicket(withdrawTicket));
    }

    function packWithdrawTicket(WithdrawTicket memory withdrawTicket) public pure returns (bytes memory) {
        return
            abi.encodePacked(
                withdrawTicket.player,
                packErc20Entry(withdrawTicket.request),
                packAddressInfo(withdrawTicket.verifyingContract),
                withdrawTicket.nonce
            );
    }
}

Settings
{
  "codegen": "yul",
  "detectMissingLibraries": false,
  "enableEraVMExtensions": false,
  "evmVersion": "paris",
  "forceEVMLA": false,
  "libraries": {},
  "optimizer": {
    "enabled": true,
    "mode": "3"
  },
  "outputSelection": {
    "*": {
      "*": [
        "abi"
      ]
    }
  },
  "viaIR": true
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_logic","type":"address"},{"internalType":"address","name":"initialOwner","type":"address"},{"internalType":"bytes","name":"_data","type":"bytes"}],"stateMutability":"payable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"admin","type":"address"}],"name":"ERC1967InvalidAdmin","type":"error"},{"inputs":[{"internalType":"address","name":"implementation","type":"address"}],"name":"ERC1967InvalidImplementation","type":"error"},{"inputs":[],"name":"ERC1967NonPayable","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[],"name":"ProxyDeniedAdminAccess","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"previousAdmin","type":"address"},{"indexed":false,"internalType":"address","name":"newAdmin","type":"address"}],"name":"AdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"stateMutability":"payable","type":"fallback"}]

9c4d535b0000000000000000000000000000000000000000000000000000000000000000010000d92db0009c7ae5e257e98c9fef6c0c89e249e341cb0bc18cc6ade2eef500000000000000000000000000000000000000000000000000000000000000600000000000000000000000000000000000000000000000000000000000000120000000000000000000000000204a561f2b171b7dd1386f3b7dd326055e40cc7600000000000000000000000092088882c62ae7af73993b7b1cdcd6986ae8447800000000000000000000000000000000000000000000000000000000000000600000000000000000000000000000000000000000000000000000000000000084f8c8765e00000000000000000000000058a14912683c7d566a520ee7a6419d17934f350100000000000000000000000080dbb931e1b4e82b712685793f30cbf156767d9e00000000000000000000000034a8439798e5ec47f0d7497051356f38aa8e6d9a0000000000000000000000008ae66d19e1c7de4da5a8a3848ffe1f503aca4cac00000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x0002000000000002000600000000000200010000000103550000006003100270000000b10030019d0000000100200190000000810000c13d0000008001000039000600000001001d000000400010043f000000cb0100004100000000001004430000000001000412000000040010044300000024000004430000000001000414000000b10010009c000000b101008041000000c001100210000000cc011001c7000080050200003902ba02b00000040f0000000100200190000001f10000613d0000000103000367000000000101043b000000b4011001970000000002000411000000000012004b000000a70000c13d000000000103043b000000cd01100197000000ce0010009c000000e60000c13d00000000080004150000000002000031000000d10020009c000000a50000213d000000440020008c000000a50000413d0000000401300370000000000901043b000000b40090009c000000a50000213d0000002401300370000000000401043b000000b50040009c000000a50000213d0000002301400039000000000021004b000000a50000813d0000000405400039000000000153034f000000000101043b000000b50010009c000000f50000213d0000001f06100039000000b7066001970000003f06600039000000b806600197000000400a00043d00000000066a00190000000000a6004b00000000070000390000000107004039000000b50060009c000000f50000213d0000000100700190000000f50000c13d000000400060043f000000000b1a043600000000041400190000002404400039000000000024004b000000a50000213d000100000008001d0000002002500039000000000323034f000000d5041001980000001f0510018f00000000024b0019000000580000613d000000000603034f00000000070b0019000000006806043c0000000007870436000000000027004b000000540000c13d00030000000a001d000400000009001d000000b406900197000000000005004b000000680000613d000000000343034f0000000304500210000000000502043300000000054501cf000000000545022f000000000303043b0000010004400089000000000343022f00000000034301cf000000000353019f000000000032043500020000000b001d00000000011b00190000000000010435000000b9010000410000000000100443000500000006001d00000004006004430000000001000414000000b10010009c000000b101008041000000c001100210000000ba011001c7000080020200003902ba02b00000040f0000000100200190000001f10000613d000000000101043b000000000001004b000001530000c13d000000ca01000041000000000010043f0000000501000029000000040010043f000000c101000041000002bc00010430000000b1023001970000001f03200039000000b203300197000000a003300039000000400030043f0000001f0420018f000000b305200198000000a003500039000000900000613d000000a006000039000000000701034f000000007807043c0000000006860436000000000036004b0000008c0000c13d000000000004004b0000009d0000613d000000000151034f0000000304400210000000000503043300000000054501cf000000000545022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000151019f00000000001304350000005f0020008c000000a50000a13d000000a00700043d000000b40070009c000000a50000213d000000c00600043d000000b40060009c000000ea0000a13d0000000001000019000002bc000104300000000001000031000000d5041001980000001f0510018f000000bb02000041000000000202041a000000b30000613d000000000603034f0000000007000019000000006806043c0000000007870436000000000047004b000000af0000c13d000000b402200197000000000005004b000000c10000613d000000000343034f0000000305500210000000000604043300000000065601cf000000000656022f000000000303043b0000010005500089000000000353022f00000000035301cf000000000363019f0000000000340435000000b10010009c000000b10100804100000060011002100000000003000414000000b10030009c000000b103008041000000c003300210000000000113019f02ba02b50000040f00000060051002700000001f0450018f000000b303500198000000d40000613d000000000601034f0000000007000019000000006806043c0000000007870436000000000037004b000000d00000c13d000000b105500197000000000004004b000000e20000613d000000000131034f0000000304400210000000000603043300000000064601cf000000000646022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000161019f0000000000130435000000600150021000000001002001900000023b0000613d000002bb0001042e000000cf01000041000000000010043f000000d001000041000002bc00010430000000e00300043d000000b50030009c000000a50000213d000000a002200039000000bf01300039000000000021004b000000a50000813d000000a0013000390000000001010433000000b60010009c000000fb0000413d000000d401000041000000000010043f0000004101000039000000040010043f000000c101000041000002bc000104300000001f04100039000000b7044001970000003f04400039000000b804400197000000400800043d0000000004480019000000000084004b00000000050000390000000105004039000000b50040009c000000f50000213d0000000100500190000000f50000c13d000000400040043f0000000009180436000000c0033000390000000004130019000000000024004b000000a50000213d000500000006001d000000000001004b000001190000613d000000000200001900000000042900190000000005230019000000000505043300000000005404350000002002200039000000000012004b000001120000413d000300000009001d000400000008001d000000000181001900000020011000390000000000010435000000b9010000410000000000100443000600000007001d00000004007004430000000001000414000000b10010009c000000b101008041000000c001100210000000ba011001c7000080020200003902ba02b00000040f0000000100200190000001f10000613d000000000101043b000000000001004b000001340000c13d000000ca01000041000000000010043f0000000601000029000000040010043f000000c101000041000002bc00010430000000bb01000041000000000201041a000000bc022001970000000605000029000000000252019f000000000021041b0000000001000414000000b10010009c000000b101008041000000c001100210000000bd011001c70000800d020000390000000203000039000000be0400004102ba02ab0000040f00000006040000290000000100200190000000050300002900000004010000290000000302000029000000a50000613d0000000001010433000000000001004b0000016d0000c13d0000000001000416000000000001004b000001f60000613d000000d301000041000000000010043f000000d001000041000002bc00010430000000bb01000041000000000201041a000000bc0220019700000004022001af000000000021041b0000000001000414000000b10010009c000000b101008041000000c001100210000000bd011001c70000800d020000390000000203000039000000be04000041000000050500002902ba02ab0000040f000000010020019000000003010000290000000202000029000000a50000613d0000000001010433000000000001004b000001c60000c13d0000000001000416000000000001004b0000014f0000c13d000002970000013d000000b10010009c000000b1010080410000006001100210000000b10020009c000000b1020080410000004002200210000000000121019f0000000002000414000000b10020009c000000b102008041000000c002200210000000000112019f000000000204001902ba02b50000040f0000006003100270000000b105300198000001990000c13d00000060030000390000008004000039000000000500041500000000010304330000000100200190000001c00000613d000400000005001d000000000001004b000001f20000c13d000000b9010000410000000000100443000000060100002900000004001004430000000001000414000000b10010009c000000b101008041000000c001100210000000ba011001c7000080020200003902ba02b00000040f0000000100200190000001f10000613d000000000101043b000000000001004b000001f20000c13d000000c0010000410000012f0000013d0000001f03500039000000b2033001970000003f03300039000000bf04300197000000400300043d0000000004430019000000000034004b00000000060000390000000106004039000000b50040009c000000f50000213d0000000100600190000000f50000c13d000000400040043f0000001f0650018f0000000004530436000000b3075001980000000005740019000001b20000613d000000000801034f0000000009040019000000008a08043c0000000009a90436000000000059004b000001ae0000c13d000000000006004b000001800000613d000000000171034f0000000306600210000000000705043300000000076701cf000000000767022f000000000101043b0000010006600089000000000161022f00000000016101cf000000000171019f0000000000150435000001800000013d000000000001004b0000023c0000c13d000000d201000041000000000010043f000000d001000041000002bc00010430000000b10020009c000000b1020080410000004002200210000000b10010009c000000b1010080410000006001100210000000000121019f0000000002000414000000b10020009c000000b102008041000000c002200210000000000112019f000000050200002902ba02b50000040f0000006003100270000000b104300198000002650000c13d00000060030000390000000001000415000400000001001d000000000103043300000001002001900000028d0000613d000000000001004b000002940000c13d000000b9010000410000000000100443000000050100002900000004001004430000000001000414000000b10010009c000000b101008041000000c001100210000000ba011001c7000080020200003902ba02b00000040f0000000100200190000001f10000613d000000000101043b000000000001004b000002940000c13d000000c0010000410000007c0000013d000000000001042f0000000001000415000000040110006900000000010000020000000503000029000000400100043d000000c20010009c000000f50000213d000000840210003900000000003204350000002402100039000000b00300004100000000003204350000006402100039000000000300041400000020040000390000000000420435000000440210003900000060040000390000000000420435000000c302000041000000000021043500000004021000390000000000020435000000b10010009c000000b1010080410000004001100210000000b10030009c000000b103008041000000c002300210000000000112019f000000c4011001c7000080060200003902ba02ab0000040f0000000100200190000002440000613d00000000020000310000000103200367000000000101043b000000000001004b0000000002000019000002470000613d000000b403100197000000800030043f000000c501000041000000000401041a000000400100043d0000002002100039000600000003001d0000000000320435000500000004001d000000b4024001970000000000210435000000b10010009c000000b10100804100000040011002100000000002000414000000b10020009c000000b102008041000000c002200210000000000112019f000000c6011001c70000800d020000390000000103000039000000c70400004102ba02ab0000040f0000000100200190000000a50000613d000000060000006b0000029c0000c13d000000c901000041000000000010043f000000040000043f000000c101000041000002bc00010430000000b10040009c000000b1040080410000004002400210000000b10010009c000000b1010080410000006001100210000000000121019f000002bc000104300000006002100270000000b102200197000000000301034f0000001f0520018f000000b306200198000000400100043d0000000004610019000002520000613d000000000703034f0000000008010019000000007907043c0000000008980436000000000048004b0000024e0000c13d000000000005004b0000025f0000613d000000000363034f0000000305500210000000000604043300000000065601cf000000000656022f000000000303043b0000010005500089000000000353022f00000000035301cf000000000363019f00000000003404350000006002200210000000b10010009c000000b1010080410000004001100210000000000121019f000002bc000104300000001f03400039000000b2033001970000003f03300039000000bf05300197000000400300043d0000000005530019000000000035004b00000000060000390000000106004039000000b50050009c000000f50000213d0000000100600190000000f50000c13d000000400050043f0000001f0540018f0000000007430436000000b306400198000600000007001d00000000046700190000027f0000613d000000000701034f0000000608000029000000007907043c0000000008980436000000000048004b0000027b0000c13d000000000005004b000001d80000613d000000000161034f0000000305500210000000000604043300000000065601cf000000000656022f000000000101043b0000010005500089000000000151022f00000000015101cf000000000161019f0000000000140435000001d80000013d000000000001004b000001c20000613d0000000602000029000000b10020009c000000b10200804100000040022002100000023f0000013d0000000001000415000000040110006900000000010000020000000001000415000000010110006900000000010000020000000001000019000002bb0001042e0000000501000029000000bc0110019700000006011001af000000c502000041000000000012041b000000800100043d000001400000044300000160001004430000002001000039000001000010044300000001010000390000012000100443000000c801000041000002bb0001042e000000000001042f000002ae002104210000000102000039000000000001042d0000000002000019000000000001042d000002b3002104230000000102000039000000000001042d0000000002000019000000000001042d000002b8002104250000000102000039000000000001042d0000000002000019000000000001042d000002ba00000432000002bb0001042e000002bc00010430000000000000000000000000000000000000000000000000010000894074f3578648bd1a7fb1cb8ec4ddb4e734dc5fcae6cae231a4c4ba5000000000000000000000000000000000000000000000000000000000ffffffff00000000000000000000000000000000000000000000000000000001ffffffe000000000000000000000000000000000000000000000000000000000ffffffe0000000000000000000000000ffffffffffffffffffffffffffffffffffffffff000000000000000000000000000000000000000000000000ffffffffffffffff0000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000001ffffffffffffffe0000000000000000000000000000000000000000000000003ffffffffffffffe01806aa1896bbf26568e884a7374b41e002500962caba6a15023a8d90e8508b830200000200000000000000000000000000000024000000000000000000000000360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbcffffffffffffffffffffffff00000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000bc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b00000000000000000000000000000000000000000000000000000003ffffffe09996b315000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000024000000000000000000000000000000000000000000000000000000000000000000000000ffffffffffffff7b9c4d535bdea7cd8a978f128b93471df48c7dbab89d703809115bdc118c235bfd02000000000000000000000000000000000000a4000000000000000000000000b53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d610302000000000000000000000000000000000000400000000000000000000000007e644d79422f17c01e4894b5f4f588d331ebfa28653d42ae832dc59e38c9798f000000020000000000000000000000000000008000000100000000000000000062e77ba2000000000000000000000000000000000000000000000000000000004c9c8ce300000000000000000000000000000000000000000000000000000000310ab089e4439a4c15d089f94afb7896ff553aecb10793d0ab882de59d99a32e0200000200000000000000000000000000000044000000000000000000000000ffffffff000000000000000000000000000000000000000000000000000000004f1ef28600000000000000000000000000000000000000000000000000000000d2b576ec0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000040000000000000000000000007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd6bda27500000000000000000000000000000000000000000000000000000000b398979f000000000000000000000000000000000000000000000000000000004e487b7100000000000000000000000000000000000000000000000000000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0000000000000000000a26469706673582212206834805bbac93f67c7d8407b2da665b703318a356736195bd184ba167df4e08864736f6c6378247a6b736f6c633a312e352e31353b736f6c633a302e382e32383b6c6c766d3a312e302e320055

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000204a561f2b171b7dd1386f3b7dd326055e40cc7600000000000000000000000092088882c62ae7af73993b7b1cdcd6986ae8447800000000000000000000000000000000000000000000000000000000000000600000000000000000000000000000000000000000000000000000000000000084f8c8765e00000000000000000000000058a14912683c7d566a520ee7a6419d17934f350100000000000000000000000080dbb931e1b4e82b712685793f30cbf156767d9e00000000000000000000000034a8439798e5ec47f0d7497051356f38aa8e6d9a0000000000000000000000008ae66d19e1c7de4da5a8a3848ffe1f503aca4cac00000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : _logic (address): 0x204A561f2b171B7Dd1386F3b7dd326055e40CC76
Arg [1] : initialOwner (address): 0x92088882c62aE7Af73993B7b1CDCD6986AE84478
Arg [2] : _data (bytes): 0xf8c8765e00000000000000000000000058a14912683c7d566a520ee7a6419d17934f350100000000000000000000000080dbb931e1b4e82b712685793f30cbf156767d9e00000000000000000000000034a8439798e5ec47f0d7497051356f38aa8e6d9a0000000000000000000000008ae66d19e1c7de4da5a8a3848ffe1f503aca4cac

-----Encoded View---------------
9 Constructor Arguments found :
Arg [0] : 000000000000000000000000204a561f2b171b7dd1386f3b7dd326055e40cc76
Arg [1] : 00000000000000000000000092088882c62ae7af73993b7b1cdcd6986ae84478
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000084
Arg [4] : f8c8765e00000000000000000000000058a14912683c7d566a520ee7a6419d17
Arg [5] : 934f350100000000000000000000000080dbb931e1b4e82b712685793f30cbf1
Arg [6] : 56767d9e00000000000000000000000034a8439798e5ec47f0d7497051356f38
Arg [7] : aa8e6d9a0000000000000000000000008ae66d19e1c7de4da5a8a3848ffe1f50
Arg [8] : 3aca4cac00000000000000000000000000000000000000000000000000000000


Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.