ETH Price: $2,949.19 (-0.22%)

Contract

0x7818561e823C185a8E3F381Ee3e15855510d29aF

Overview

ETH Balance

1.506996600960008141 ETH

ETH Value

$4,444.42 (@ $2,949.19/ETH)

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To
Claim184435172025-09-02 18:07:37144 days ago1756836457IN
0x7818561e...5510d29aF
0 ETH0.000005880.047
Claim184367762025-09-02 16:10:57144 days ago1756829457IN
0x7818561e...5510d29aF
0 ETH0.000006770.04525
Claim184352422025-09-02 15:44:27144 days ago1756827867IN
0x7818561e...5510d29aF
0 ETH0.000007060.04525
Claim184315602025-09-02 14:40:05144 days ago1756824005IN
0x7818561e...5510d29aF
0 ETH0.000005610.04525
Claim184301142025-09-02 14:15:03144 days ago1756822503IN
0x7818561e...5510d29aF
0 ETH0.000005470.04525
Claim184119722025-09-02 8:54:42144 days ago1756803282IN
0x7818561e...5510d29aF
0 ETH0.000006480.047
Claim184092622025-09-02 8:07:36144 days ago1756800456IN
0x7818561e...5510d29aF
0 ETH0.000005580.04525
Claim184086252025-09-02 7:56:33144 days ago1756799793IN
0x7818561e...5510d29aF
0 ETH0.000005580.04525
Claim184034822025-09-02 6:27:12144 days ago1756794432IN
0x7818561e...5510d29aF
0 ETH0.000006280.04525
Claim183994272025-09-02 5:16:13144 days ago1756790173IN
0x7818561e...5510d29aF
0 ETH0.000005670.04525
Claim183849102025-09-02 0:56:04145 days ago1756774564IN
0x7818561e...5510d29aF
0 ETH0.000007040.04525
Claim183832012025-09-02 0:23:39145 days ago1756772619IN
0x7818561e...5510d29aF
0 ETH0.000005620.047
Claim183793332025-09-01 23:10:24145 days ago1756768224IN
0x7818561e...5510d29aF
0 ETH0.000007070.04525
Claim183775002025-09-01 22:35:37145 days ago1756766137IN
0x7818561e...5510d29aF
0 ETH0.000006410.04525
Claim183773772025-09-01 22:33:16145 days ago1756765996IN
0x7818561e...5510d29aF
0 ETH0.00000710.04525
Claim183755842025-09-01 21:59:30145 days ago1756763970IN
0x7818561e...5510d29aF
0 ETH0.000007120.04525
Claim183743022025-09-01 21:35:53145 days ago1756762553IN
0x7818561e...5510d29aF
0 ETH0.000005660.04525
Claim183722982025-09-01 20:59:16145 days ago1756760356IN
0x7818561e...5510d29aF
0 ETH0.00000710.04525
Claim183596072025-09-01 17:16:02145 days ago1756746962IN
0x7818561e...5510d29aF
0 ETH0.000006470.04525
Claim183588102025-09-01 17:02:01145 days ago1756746121IN
0x7818561e...5510d29aF
0 ETH0.000006030.04525
Claim183503092025-09-01 14:35:52145 days ago1756737352IN
0x7818561e...5510d29aF
0 ETH0.000007970.04525
Claim183445532025-09-01 12:54:10145 days ago1756731250IN
0x7818561e...5510d29aF
0 ETH0.000009060.04525
Claim183162162025-09-01 4:28:46145 days ago1756700926IN
0x7818561e...5510d29aF
0 ETH0.000005670.04525
Claim182993722025-08-31 23:17:14146 days ago1756682234IN
0x7818561e...5510d29aF
0 ETH0.000005580.04525
Claim182948022025-08-31 21:48:12146 days ago1756676892IN
0x7818561e...5510d29aF
0 ETH0.000005830.04525
View all transactions

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Block From To
173732222025-08-20 11:15:38157 days ago1755688538
0x7818561e...5510d29aF
0.03287514 ETH
143029362025-07-14 15:27:03194 days ago1752506823
0x7818561e...5510d29aF
0.00328751 ETH
101725762025-05-26 3:54:29243 days ago1748231669
0x7818561e...5510d29aF
0.24656358 ETH
92849992025-05-15 15:33:21254 days ago1747323201
0x7818561e...5510d29aF
0.00032875 ETH
91756602025-05-14 8:25:14255 days ago1747211114
0x7818561e...5510d29aF
0.09862543 ETH
91583092025-05-14 3:30:10255 days ago1747193410
0x7818561e...5510d29aF
0.00986254 ETH
91149032025-05-13 15:11:22256 days ago1747149082
0x7818561e...5510d29aF
0.00657502 ETH
85040042025-05-06 8:31:03263 days ago1746520263
0x7818561e...5510d29aF
0.0019725 ETH
84425502025-05-05 14:58:57264 days ago1746457137
0x7818561e...5510d29aF
0.15385567 ETH
84373032025-05-05 13:29:39264 days ago1746451779
0x7818561e...5510d29aF
0.00460252 ETH
83391312025-05-04 9:25:44265 days ago1746350744
0x7818561e...5510d29aF
0.01873883 ETH
83282832025-05-04 6:19:38265 days ago1746339578
0x7818561e...5510d29aF
0.0006575 ETH
82801692025-05-03 16:27:17266 days ago1746289637
0x7818561e...5510d29aF
0.82187859 ETH
82801272025-05-03 16:26:34266 days ago1746289594
0x7818561e...5510d29aF
0.82187859 ETH
82801132025-05-03 16:26:20266 days ago1746289580
0x7818561e...5510d29aF
0.77256588 ETH
82800382025-05-03 16:24:53266 days ago1746289493
0x7818561e...5510d29aF
0.82187859 ETH
81409362025-05-02 0:36:02268 days ago1746146162
0x7818561e...5510d29aF
0.00591752 ETH
81389272025-05-02 0:01:08268 days ago1746144068
0x7818561e...5510d29aF
0.00821878 ETH
80585102025-05-01 1:05:42269 days ago1746061542
0x7818561e...5510d29aF
0.03287514 ETH
80349662025-04-30 18:22:54269 days ago1746037374
0x7818561e...5510d29aF
0.00394501 ETH
79574822025-04-29 20:17:53270 days ago1745957873
0x7818561e...5510d29aF
0.00493127 ETH
79530452025-04-29 19:02:23270 days ago1745953343
0x7818561e...5510d29aF
0.12755555 ETH
79178022025-04-29 8:52:56270 days ago1745916776
0x7818561e...5510d29aF
0.01315005 ETH
79175782025-04-29 8:49:10270 days ago1745916550
0x7818561e...5510d29aF
0.00953379 ETH
79174572025-04-29 8:47:09270 days ago1745916429
0x7818561e...5510d29aF
0.00394501 ETH
View All Internal Transactions
Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
Tranche

Compiler Version
v0.8.26+commit.8a97fa7a

ZkSolc Version
v1.5.11

Optimization Enabled:
Yes with Mode 3

Other Settings:
cancun EvmVersion
//SPDX-License-Identifier: Unlicense
pragma solidity ^0.8.19;

import "@openzeppelin/token/ERC20/IERC20.sol";
import "@openzeppelin/access/Ownable.sol";

import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";

contract Tranche is Ownable {
    error InvalidDate();
    error MaturityDateReached();
    error MaxCapReached();
    error InvalidCap();
    error MaturityDateNotReached();
    error WithdrawFailed();
    error AlreadyClaimed();
    error InvalidAddress();
    error InvalidMaxCap();
    error TooSoon();
    error WalletCapReached();

    event NewDeposit(address indexed depositor, uint256 depositAmt, uint256 totalDeposits);

    event NewMaxCapSet(uint256 maxCap);

    address public immutable bigcoin;

    // when rewards are released
    uint256 public immutable maturityDate;

    // total rewards to be paid out in ETH
    uint256 public rewards;

    // total amount of deposits allowed
    uint256 public maxCap;

    // current amount of total deposits
    uint256 public totalDeposits;

    // deposits per user
    mapping(address => uint256) public userDeposits;

    // tracks claims when maturity date is reached
    mapping(address => bool) public userClaimed;

    // track how many rewards a user claimed at maturity date
    mapping(address => uint256) public userClaimedEthAmt;

    uint256 public walletCap;

    constructor(uint256 _maturityDate, uint256 _maxCap, address _bigcoin) Ownable(msg.sender) {
        if (_maturityDate < block.timestamp) revert InvalidDate();
        if (_bigcoin == address(0)) revert InvalidAddress();
        if (_maxCap == 0) revert InvalidMaxCap();

        maturityDate = _maturityDate;
        maxCap = _maxCap;
        bigcoin = _bigcoin;
        walletCap = 2500e18;
    }

    // deposit into this tranche
    function deposit(uint256 amt) external returns (uint256) {
        if (totalDeposits == maxCap) revert MaxCapReached();
        if (block.timestamp > maturityDate) revert MaturityDateReached();
        if (userDeposits[msg.sender] + amt > walletCap) {
            revert WalletCapReached();
        }

        // only deposit up to max cap
        uint256 depositAmt = amt;
        if (totalDeposits + depositAmt > maxCap) {
            depositAmt = maxCap - totalDeposits;
        }

        userDeposits[msg.sender] += depositAmt;
        totalDeposits += depositAmt;

        IERC20(bigcoin).transferFrom(msg.sender, address(this), depositAmt);

        emit NewDeposit(msg.sender, depositAmt, totalDeposits);

        return depositAmt;
    }

    // when maturity date is reached, allow claiming of rewards
    function claim() external returns (uint256, uint256) {
        if (block.timestamp <= maturityDate) revert MaturityDateNotReached();
        if (userClaimed[msg.sender]) revert AlreadyClaimed();

        // prevent double claim
        userClaimed[msg.sender] = true;

        uint256 userDeposit = userDeposits[msg.sender];

        // (userDeposit / totalDeposits) in fixed point (WAD = 1e18)
        uint256 share = FixedPointMathLib.divWad(userDeposit, totalDeposits);
        uint256 reward = FixedPointMathLib.mulWad(share, rewards);

        userClaimedEthAmt[msg.sender] = reward;

        (bool success,) = payable(msg.sender).call{value: reward}("");
        if (!success) revert WithdrawFailed();

        IERC20(bigcoin).transfer(msg.sender, userDeposit);

        return (reward, userDeposit);
    }

    function setMaxCap(uint256 _maxCap) external onlyOwner {
        // tranche already matured
        if (block.timestamp > maturityDate) revert MaturityDateReached();

        // cant set less than deposited amount in contract
        if (_maxCap < totalDeposits) revert InvalidCap();

        maxCap = _maxCap;

        emit NewMaxCapSet(maxCap);
    }

    // can claim any unclaimed rewards after 15 days
    function claimUnclaimed() external onlyOwner {
        if (block.timestamp < maturityDate + 15 days) revert TooSoon();

        (bool success,) = payable(msg.sender).call{value: address(this).balance}("");
        if (!success) revert WithdrawFailed();

        IERC20(bigcoin).transfer(msg.sender, IERC20(bigcoin).balanceOf(address(this)));
    }

    function setWalletCap(uint256 cap) external onlyOwner {
        walletCap = cap;
    }

    function claimedAmt(address depositor) external view returns (uint256, uint256) {
        return (userClaimedEthAmt[depositor], userDeposits[depositor]);
    }

    function viewRewards(address depositor) external view returns (uint256) {
        uint256 userDeposit = userDeposits[depositor];

        // (userDeposit / totalDeposits) in fixed point (WAD = 1e18)
        uint256 share = FixedPointMathLib.divWad(userDeposit, totalDeposits);
        uint256 reward = FixedPointMathLib.mulWad(share, rewards);

        return reward;
    }

    receive() external payable {
        if (block.timestamp > maturityDate) revert MaturityDateReached();
        rewards += msg.value;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 4 of 5 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The mantissa is too big to fit.
    error MantissaOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, due to an multiplication overflow.
    error SMulWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error SDivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The input outside the acceptable domain.
    error OutOfDomain();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if gt(x, div(not(0), y)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if iszero(eq(div(z, y), x)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, WAD)
            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
            if iszero(mul(y, eq(sdiv(z, WAD), x))) {
                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    /// Note: This function is an approximation.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is less than 0.5 we return zero.
            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
            if (x <= -41446531673892822313) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // `k` is in the range `[-61, 195]`.

            // Evaluate using a (6, 7)-term rational approximation.
            // `p` is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already `2**96` too large.
                r := sdiv(p, q)
            }

            // r should be in the range `(0.09, 0.25) * 2**96`.

            // We now need to multiply r by:
            // - The scale factor `s ≈ 6.031367120`.
            // - The `2**k` factor from the range reduction.
            // - The `1e18 / 2**96` factor for base conversion.
            // We do this all at once, with an intermediate result in `2**213`
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function lnWad(int256 x) internal pure returns (int256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
            // We do this by multiplying by `2**96 / 10**18`. But since
            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
            // and add `ln(2**96 / 10**18)` at the end.

            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // We place the check here for more optimal stack operations.
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
            // forgefmt: disable-next-item
            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x := shr(159, shl(r, x))

            // Evaluate using a (8, 8)-term rational approximation.
            // `p` is made monic, we will multiply by a scale factor later.
            // forgefmt: disable-next-item
            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                sar(96, mul(add(43456485725739037958740375743393,
                sar(96, mul(add(24828157081833163892658089445524,
                sar(96, mul(add(3273285459638523848632254066296,
                    x), x))), x))), x)), 11111509109440967052023855526967)
            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.

            // `q` is monic by convention.
            let q := add(5573035233440673466300451813936, x)
            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
            q := add(909429971244387300277376558375, sar(96, mul(x, q)))

            // `p / q` is in the range `(0, 0.125) * 2**96`.

            // Finalization, we need to:
            // - Multiply by the scale factor `s = 5.549…`.
            // - Add `ln(2**96 / 10**18)`.
            // - Add `k * ln(2)`.
            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.

            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already `2**96` too large.
            p := sdiv(p, q)
            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
            p := mul(1677202110996718588342820967067443963516166, p)
            // Add `ln(2) * k * 5**18 * 2**192`.
            // forgefmt: disable-next-item
            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
            // Base conversion: mul `2**18 / 2**192`.
            r := sar(174, p)
        }
    }

    /// @dev Returns `W_0(x)`, denominated in `WAD`.
    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
    /// a.k.a. Product log function. This is an approximation of the principal branch.
    /// Note: This function is an approximation. Monotonically increasing.
    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
        // forgefmt: disable-next-item
        unchecked {
            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
            (int256 wad, int256 p) = (int256(WAD), x);
            uint256 c; // Whether we need to avoid catastrophic cancellation.
            uint256 i = 4; // Number of iterations.
            if (w <= 0x1ffffffffffff) {
                if (-0x4000000000000 <= w) {
                    i = 1; // Inputs near zero only take one step to converge.
                } else if (w <= -0x3ffffffffffffff) {
                    i = 32; // Inputs near `-1/e` take very long to converge.
                }
            } else if (uint256(w >> 63) == uint256(0)) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Inline log2 for more performance, since the range is small.
                    let v := shr(49, w)
                    let l := shl(3, lt(0xff, v))
                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                    c := gt(l, 60)
                    i := add(2, add(gt(l, 53), c))
                }
            } else {
                int256 ll = lnWad(w = lnWad(w));
                /// @solidity memory-safe-assembly
                assembly {
                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                    i := add(3, iszero(shr(68, x)))
                    c := iszero(shr(143, x))
                }
                if (c == uint256(0)) {
                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := mul(w, div(e, wad))
                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != uint256(0));
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    return w;
                }
            }
            do { // Otherwise, use Halley's for faster convergence.
                int256 e = expWad(w);
                /// @solidity memory-safe-assembly
                assembly {
                    let t := add(w, wad)
                    let s := sub(mul(w, e), mul(x, wad))
                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                }
                if (p <= w) break;
                p = w;
            } while (--i != c);
            /// @solidity memory-safe-assembly
            assembly {
                w := sub(w, sgt(w, 2))
            }
            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
            if (c == uint256(0)) return w;
            int256 t = w | 1;
            /// @solidity memory-safe-assembly
            assembly {
                x := sdiv(mul(x, wad), t)
            }
            x = (t * (wad + lnWad(x)));
            /// @solidity memory-safe-assembly
            assembly {
                w := sdiv(x, add(wad, t))
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `a * b == x * y`, with full precision.
    function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0))))
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // 512-bit multiply `[p1 p0] = x * y`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = p1 * 2**256 + p0`.

            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`.
            for {} 1 {} {
                // If overflows.
                if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.

                    /*------------------- 512 by 256 division --------------------*/

                    // Make division exact by subtracting the remainder from `[p1 p0]`.
                    let r := mulmod(x, y, d) // Compute remainder using mulmod.
                    let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                    // Make sure `z` is less than `2**256`. Also prevents `d == 0`.
                    // Placing the check here seems to give more optimal stack operations.
                    if iszero(gt(d, p1)) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    d := div(d, t) // Divide `d` by `t`, which is a power of two.
                    // Invert `d mod 2**256`
                    // Now that `d` is an odd number, it has an inverse
                    // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                    // Compute the inverse by starting with a seed that is correct
                    // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                    let inv := xor(2, mul(3, d))
                    // Now use Newton-Raphson iteration to improve the precision.
                    // Thanks to Hensel's lifting lemma, this also works in modular
                    // arithmetic, doubling the correct bits in each step.
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                    z :=
                        mul(
                            // Divide [p1 p0] by the factors of two.
                            // Shift in bits from `p1` into `p0`. For this we need
                            // to flip `t` such that it is `2**256 / t`.
                            or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                            mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                        )
                    break
                }
                z := div(z, d)
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
    /// Performs the full 512 bit calculation regardless.
    function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            let mm := mulmod(x, y, not(0))
            let p1 := sub(mm, add(z, lt(mm, z)))
            let t := and(d, sub(0, d))
            let r := mulmod(x, y, d)
            d := div(d, t)
            let inv := xor(2, mul(3, d))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            z :=
                mul(
                    or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                    mul(sub(2, mul(d, inv)), inv)
                )
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        z = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                z := add(z, 1)
                if iszero(z) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Calculates `floor(x * y / 2 ** n)` with full precision.
    /// Throws if result overflows a uint256.
    /// Credit to Philogy under MIT license:
    /// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol
    function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`.
            for {} 1 {} {
                if iszero(or(iszero(x), eq(div(z, x), y))) {
                    let k := and(n, 0xff) // `n`, cleaned.
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
                    //         |      p1     |      z     |
                    // Before: | p1_0 ¦ p1_1 | z_0  ¦ z_1 |
                    // Final:  |   0  ¦ p1_0 | p1_1 ¦ z_0 |
                    // Check that final `z` doesn't overflow by checking that p1_0 = 0.
                    if iszero(shr(k, p1)) {
                        z := add(shl(sub(256, k), p1), shr(k, z))
                        break
                    }
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
                z := shr(and(n, 0xff), z)
                break
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(z, d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(z, d))), div(z, d))
        }
    }

    /// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`.
    function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) {
        /// @solidity memory-safe-assembly
        assembly {
            let g := n
            let r := mod(a, n)
            for { let y := 1 } 1 {} {
                let q := div(g, r)
                let t := g
                g := r
                r := sub(t, mul(r, q))
                let u := x
                x := y
                y := sub(u, mul(y, q))
                if iszero(r) { break }
            }
            x := mul(eq(g, 1), add(x, mul(slt(x, 0), n)))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`. Alias for `saturatingSub`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function saturatingSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `min(2 ** 256 - 1, x + y)`.
    function saturatingAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(sub(0, lt(add(x, y), x)), add(x, y))
        }
    }

    /// @dev Returns `min(2 ** 256 - 1, x * y)`.
    function saturatingMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(sub(or(iszero(x), eq(div(mul(x, y), x), y)), 1), mul(x, y))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, address x, address y) internal pure returns (address z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `x != 0 ? x : y`, without branching.
    function coalesce(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(x)))
        }
    }

    /// @dev Returns `x != bytes32(0) ? x : y`, without branching.
    function coalesce(bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(x)))
        }
    }

    /// @dev Returns `x != address(0) ? x : y`, without branching.
    function coalesce(address x, address y) internal pure returns (address z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(shl(96, x))))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if x {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`, rounded down.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`, rounded down.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // Makeshift lookup table to nudge the approximate log2 result.
            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
            // Newton-Raphson's.
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            // Round down.
            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
            z = (1 + sqrt(x)) * 10 ** 9;
            z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
        }
        /// @solidity memory-safe-assembly
        assembly {
            z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
            z = (1 + cbrt(x)) * 10 ** 12;
            z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
        }
        /// @solidity memory-safe-assembly
        assembly {
            let p := x
            for {} 1 {} {
                if iszero(shr(229, p)) {
                    if iszero(shr(199, p)) {
                        p := mul(p, 100000000000000000) // 10 ** 17.
                        break
                    }
                    p := mul(p, 100000000) // 10 ** 8.
                    break
                }
                if iszero(shr(249, p)) { p := mul(p, 100) }
                break
            }
            let t := mulmod(mul(z, z), z, p)
            z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := 1
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for {} x { x := sub(x, 1) } { z := mul(z, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
        /// @solidity memory-safe-assembly
        assembly {
            mantissa := x
            if mantissa {
                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                    exponent := 33
                }
                if iszero(mod(mantissa, 10000000000000000000)) {
                    mantissa := div(mantissa, 10000000000000000000)
                    exponent := add(exponent, 19)
                }
                if iszero(mod(mantissa, 1000000000000)) {
                    mantissa := div(mantissa, 1000000000000)
                    exponent := add(exponent, 12)
                }
                if iszero(mod(mantissa, 1000000)) {
                    mantissa := div(mantissa, 1000000)
                    exponent := add(exponent, 6)
                }
                if iszero(mod(mantissa, 10000)) {
                    mantissa := div(mantissa, 10000)
                    exponent := add(exponent, 4)
                }
                if iszero(mod(mantissa, 100)) {
                    mantissa := div(mantissa, 100)
                    exponent := add(exponent, 2)
                }
                if iszero(mod(mantissa, 10)) {
                    mantissa := div(mantissa, 10)
                    exponent := add(exponent, 1)
                }
            }
        }
    }

    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
    /// enough to fit in the desired unsigned integer type:
    /// ```
    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
    /// ```
    function packSci(uint256 x) internal pure returns (uint256 packed) {
        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
        /// @solidity memory-safe-assembly
        assembly {
            if shr(249, x) {
                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                revert(0x1c, 0x04)
            }
            packed := or(shl(7, x), packed)
        }
    }

    /// @dev Convenience function for unpacking a packed number from `packSci`.
    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
        unchecked {
            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards zero.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        unchecked {
            z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
        internal
        pure
        returns (uint256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        unchecked {
            if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
            return a - fullMulDiv(a - b, t - begin, end - begin);
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
        internal
        pure
        returns (int256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        // forgefmt: disable-next-item
        unchecked {
            if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
                uint256(t - begin), uint256(end - begin)));
            return int256(uint256(a) - fullMulDiv(uint256(a - b),
                uint256(t - begin), uint256(end - begin)));
        }
    }

    /// @dev Returns if `x` is an even number. Some people may need this.
    function isEven(uint256 x) internal pure returns (bool) {
        return x & uint256(1) == uint256(0);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

Settings
{
  "viaIR": false,
  "codegen": "yul",
  "remappings": [
    "@openzeppelin/=lib/openzeppelin-contracts/contracts/",
    "solady/=lib/solady/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "evmVersion": "cancun",
  "outputSelection": {
    "*": {
      "*": [
        "abi"
      ]
    }
  },
  "optimizer": {
    "enabled": true,
    "mode": "3",
    "fallback_to_optimizing_for_size": false,
    "disable_system_request_memoization": true
  },
  "metadata": {},
  "libraries": {},
  "enableEraVMExtensions": false,
  "forceEVMLA": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"uint256","name":"_maturityDate","type":"uint256"},{"internalType":"uint256","name":"_maxCap","type":"uint256"},{"internalType":"address","name":"_bigcoin","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyClaimed","type":"error"},{"inputs":[],"name":"InvalidAddress","type":"error"},{"inputs":[],"name":"InvalidCap","type":"error"},{"inputs":[],"name":"InvalidDate","type":"error"},{"inputs":[],"name":"InvalidMaxCap","type":"error"},{"inputs":[],"name":"MaturityDateNotReached","type":"error"},{"inputs":[],"name":"MaturityDateReached","type":"error"},{"inputs":[],"name":"MaxCapReached","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"TooSoon","type":"error"},{"inputs":[],"name":"WalletCapReached","type":"error"},{"inputs":[],"name":"WithdrawFailed","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"depositor","type":"address"},{"indexed":false,"internalType":"uint256","name":"depositAmt","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalDeposits","type":"uint256"}],"name":"NewDeposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"maxCap","type":"uint256"}],"name":"NewMaxCapSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"bigcoin","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claim","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimUnclaimed","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"depositor","type":"address"}],"name":"claimedAmt","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amt","type":"uint256"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"maturityDate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewards","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_maxCap","type":"uint256"}],"name":"setMaxCap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"cap","type":"uint256"}],"name":"setWalletCap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalDeposits","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userClaimedEthAmt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userDeposits","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"depositor","type":"address"}],"name":"viewRewards","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"walletCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]

9c4d535b0000000000000000000000000000000000000000000000000000000000000000010001d162ffb64e07303d94bf8d8671cd168d6cb5dba381018d7c8950eec5b90000000000000000000000000000000000000000000000000000000000000060000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000680b9560000000000000000000000000000000000000000000000fe1c215e8f838e00000000000000000000000000000df70075737e9f96b078ab4461eee3e055e061223

Deployed Bytecode

0x00010000000000020008000000000002000000000001035500000060031002700000017b0330019700000001002001900000001e0000c13d0000008002000039000000400020043f000000040030008c000000490000413d000000000201043b000000e0022002700000018c0020009c0000006e0000a13d0000018d0020009c000000850000213d000001940020009c000000d50000a13d000001950020009c0000014c0000613d000001960020009c000001510000613d000001970020009c000005250000c13d0000000001000416000000000001004b000005250000c13d0000000101000039000002610000013d0000000002000416000000000002004b000005250000c13d0000001f023000390000017c02200197000000c002200039000000400020043f0000001f0430018f0000017d05300198000000c0025000390000002f0000613d000000c006000039000000000701034f000000007807043c0000000006860436000000000026004b0000002b0000c13d000000000004004b0000003c0000613d000000000151034f0000000304400210000000000502043300000000054501cf000000000545022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000151019f0000000000120435000000600030008c000005250000413d000001000400043d0000017e0040009c000005250000213d0000000006000411000000000006004b000000ad0000c13d000001a901000041000000000010043f000000040000043f000001a801000041000005ea00010430000000000003004b000005250000c13d0000018a010000410000000000100443000000000100041200000004001004430000002001000039000000240010044300000000010004140000017b0010009c0000017b01008041000000c0011002100000018b011001c7000080050200003905e805e30000040f0000000100200190000005270000613d000000000101043b000400000001001d0000018201000041000000000010044300000000010004140000017b0010009c0000017b01008041000000c00110021000000183011001c70000800b0200003905e805e30000040f0000000100200190000005270000613d000000000101043b000000040010006c000001430000a13d000001b501000041000000000010043f0000018701000041000005ea000104300000019a0020009c000000990000a13d0000019b0020009c0000010e0000a13d0000019c0020009c000001560000613d0000019d0020009c0000016e0000613d0000019e0020009c000005250000c13d000000240030008c000005250000413d0000000001000416000000000001004b000005250000c13d05e805900000040f00000004010000390000000001100367000000000101043b0000000702000039000000000012041b0000000001000019000005e90001042e0000018e0020009c000001170000a13d0000018f0020009c0000017f0000613d000001900020009c0000019a0000613d000001910020009c000005250000c13d000000240030008c000005250000413d0000000002000416000000000002004b000005250000c13d0000000401100370000000000101043b0000017e0010009c000005250000213d000000000010043f0000000601000039000000aa0000013d000001a10020009c0000012b0000213d000001a40020009c000001b90000613d000001a50020009c000005250000c13d000000240030008c000005250000413d0000000002000416000000000002004b000005250000c13d0000000401100370000000000101043b0000017e0010009c000005250000213d000000000010043f0000000401000039000000200010043f05e805b30000040f000002610000013d000000e00100043d000200000001001d000000c00100043d000400000001001d000000000100041a0000017f02100197000000000262019f000000000020041b00000000020004140000017e051001970000017b0020009c0000017b02008041000000c00120021000000180011001c70000800d020000390000000303000039000300000004001d000001810400004105e805de0000040f0000000100200190000005250000613d0000018201000041000000000010044300000000010004140000017b0010009c0000017b01008041000000c00110021000000183011001c70000800b0200003905e805e30000040f0000000100200190000005270000613d000000000101043b0000000405000029000000000015004b0000026a0000813d0000018901000041000000000010043f0000018701000041000005ea00010430000001980020009c000001d90000613d000001990020009c000005250000c13d000000240030008c000005250000413d0000000002000416000000000002004b000005250000c13d0000000401100370000000000301043b000000000100041a0000017e021001970000000001000411000000000012004b000002710000c13d000400000003001d0000018a010000410000000000100443000000000100041200000004001004430000002001000039000000240010044300000000010004140000017b0010009c0000017b01008041000000c0011002100000018b011001c7000080050200003905e805e30000040f0000000100200190000005270000613d000000000101043b000300000001001d0000018201000041000000000010044300000000010004140000017b0010009c0000017b01008041000000c00110021000000183011001c70000800b0200003905e805e30000040f0000000100200190000005270000613d000000000101043b000000030010006c0000006a0000213d0000000301000039000000000101041a0000000402000029000000000012004b000002e70000813d000001b401000041000000000010043f0000018701000041000005ea000104300000019f0020009c000001f10000613d000001a00020009c000005250000c13d0000000001000416000000000001004b000005250000c13d0000000701000039000002610000013d000001920020009c0000024c0000613d000001930020009c000005250000c13d0000000001000416000000000001004b000005250000c13d0000000001000412000600000001001d000500200000003d000080050100003900000044030000390000000004000415000000060440008a00000005044002100000018a0200004105e805c00000040f000000800010043f000001a601000041000005e90001042e000001a20020009c0000025d0000613d000001a30020009c000005250000c13d000000240030008c000005250000413d0000000002000416000000000002004b000005250000c13d0000000401100370000000000101043b0000017e0010009c000005250000213d000000000010043f0000000501000039000000200010043f05e805b30000040f000000000101041a000000ff001001900000000001000039000000010100c039000000800010043f000001a601000041000005e90001042e0000000101000039000000000201041a0000000003000416000000000032001a000001d30000413d0000000002320019000000000021041b0000000001000019000005e90001042e0000000001000416000000000001004b000005250000c13d0000000301000039000002610000013d0000000001000416000000000001004b000005250000c13d000000000100041a0000017b0000013d000000240030008c000005250000413d0000000002000416000000000002004b000005250000c13d0000000401100370000000000101043b0000017e0010009c000005250000213d000000000010043f0000000601000039000000200010043f05e805b30000040f000000000101041a000400000001001d0000000401000039000000200010043f05e805b30000040f000000000101041a0000000402000029000000800020043f000000a00010043f000001b601000041000005e90001042e0000000001000416000000000001004b000005250000c13d0000000001000412000800000001001d000700000000003d000080050100003900000044030000390000000004000415000000080440008a00000005044002100000018a0200004105e805c00000040f0000017e01100197000000800010043f000001a601000041000005e90001042e000000240030008c000005250000413d0000000002000416000000000002004b000005250000c13d0000000401100370000000000101043b0000017e0010009c000005250000213d000000000010043f0000000401000039000000200010043f05e805b30000040f0000000302000039000000000202041a000000000101041a05e8059b0000040f0000000102000039000000000202041a05e805a60000040f000000400200043d00000000001204350000017b0020009c0000017b020080410000004001200210000001aa011001c7000005e90001042e000000240030008c000005250000413d0000000002000416000000000002004b000005250000c13d0000000401100370000000000101043b0000017e0010009c000005250000213d000000000200041a0000017e032001970000000005000411000000000053004b000002650000c13d0000017e06100198000000440000613d0000017f01200197000000000161019f000000000010041b00000000010004140000017b0010009c0000017b01008041000000c00110021000000180011001c70000800d020000390000000303000039000001810400004105e805de0000040f0000000100200190000001ef0000c13d000005250000013d0000000001000416000000000001004b000005250000c13d000000000100041a0000017e011001970000000002000411000000000021004b000002760000c13d0000018a010000410000000000100443000000000100041200000004001004430000002001000039000000240010044300000000010004140000017b0010009c0000017b01008041000000c0011002100000018b011001c7000080050200003905e805e30000040f0000000100200190000005270000613d000000000101043b000001c30110009c000002d00000413d000001c801000041000000000010043f0000001101000039000000040010043f000001a801000041000005ea000104300000000001000416000000000001004b000005250000c13d000000000100041a0000017e021001970000000005000411000000000052004b000002650000c13d0000017f01100197000000000010041b00000000010004140000017b0010009c0000017b01008041000000c00110021000000180011001c70000800d0200003900000003030000390000018104000041000000000600001905e805de0000040f0000000100200190000005250000613d0000000001000019000005e90001042e0000000001000416000000000001004b000005250000c13d0000018a010000410000000000100443000000000100041200000004001004430000002001000039000000240010044300000000010004140000017b0010009c0000017b01008041000000c0011002100000018b011001c7000080050200003905e805e30000040f0000000100200190000005270000613d000000000101043b000400000001001d0000018201000041000000000010044300000000010004140000017b0010009c0000017b01008041000000c00110021000000183011001c70000800b0200003905e805e30000040f0000000100200190000005270000613d000000000101043b000000040010006c000002e30000a13d0000000001000411000000000010043f0000000501000039000000200010043f00000000010004140000017b0010009c0000017b01008041000000c001100210000001ab011001c7000080100200003905e805e30000040f0000000100200190000005250000613d000000000101043b000000000201041a000000ff00200190000002fb0000c13d000001ca0220019700000001022001bf000000000021041b0000000001000411000000000010043f0000000401000039000000200010043f00000000010004140000017b0010009c0000017b01008041000000c001100210000001ab011001c7000080100200003905e805e30000040f0000000100200190000005250000613d0000000302000039000000000202041a000000000101043b000000000101041a000001b90010009c000003b00000213d000000000002004b000003b00000613d000200000001001d000001ba011000d100040000002100e10000000101000039000000000101041a000300000001001d000000000001004b000004730000613d000000010100008a00000003011000fa000000040010006c000004730000813d000001bb01000041000000000010043f000001bc01000041000005ea00010430000000240030008c000005250000413d0000000002000416000000000002004b000005250000c13d0000000401100370000000000201043b0000000201000039000000000301041a0000000301000039000000000101041a000000000013004b0000027b0000c13d000001b101000041000000000010043f0000018701000041000005ea000104300000000001000416000000000001004b000005250000c13d0000000201000039000000000101041a000000800010043f000001a601000041000005e90001042e000001a701000041000000000010043f000000040050043f000001a801000041000005ea0001043000000003040000290000017e00400198000002b90000c13d0000018801000041000000000010043f0000018701000041000005ea00010430000001a702000041000000000020043f000000040010043f000001a801000041000005ea00010430000001a701000041000000000010043f000000040020043f000001a801000041000005ea00010430000300000001001d000200000003001d000400000002001d0000018a010000410000000000100443000000000100041200000004001004430000002001000039000000240010044300000000010004140000017b0010009c0000017b01008041000000c0011002100000018b011001c7000080050200003905e805e30000040f0000000100200190000005270000613d000000000101043b000100000001001d0000018201000041000000000010044300000000010004140000017b0010009c0000017b01008041000000c00110021000000183011001c70000800b0200003905e805e30000040f0000000100200190000005270000613d000000000101043b000000010010006c0000006a0000213d0000000001000411000000000010043f0000000401000039000000200010043f00000000010004140000017b0010009c0000017b01008041000000c001100210000001ab011001c7000080100200003905e805e30000040f0000000100200190000005250000613d000000000101043b000000000101041a0000000403000029000000000031001a0000000304000029000001d30000413d00000000013100190000000702000039000000000202041a000000000021004b000003150000a13d000001b001000041000000000010043f0000018701000041000005ea000104300000000202000029000000000002004b000002c00000c13d0000018601000041000000000010043f0000018701000041000005ea00010430000000a00050043f0000000201000039000000000021041b000000800040043f00000184020000410000000703000039000000000023041b0000014000000443000001600040044300000020020000390000018000200443000001a000500443000001000020044300000120001004430000018501000041000005e90001042e000400000001001d0000018201000041000000000010044300000000010004140000017b0010009c0000017b01008041000000c00110021000000183011001c70000800b0200003905e805e30000040f0000000100200190000005270000613d000000000101043b000000040010006c000002ff0000813d000001c901000041000000000010043f0000018701000041000005ea00010430000001b701000041000000000010043f0000018701000041000005ea000104300000000201000039000000000021041b000000400100043d00000000002104350000017b0010009c0000017b01008041000000400110021000000000020004140000017b0020009c0000017b02008041000000c002200210000000000112019f000001b2011001c70000800d020000390000000103000039000001b30400004105e805de0000040f0000000100200190000001ef0000c13d000005250000013d000001b801000041000000000010043f0000018701000041000005ea00010430000001c40100004100000000001004430000000001000410000000040010044300000000010004140000017b0010009c0000017b01008041000000c001100210000001c5011001c70000800a0200003905e805e30000040f0000000100200190000005270000613d000000000301043b00000000010004140000017b0010009c0000017b01008041000000c001100210000000000003004b000003b40000c13d0000000002000411000003b80000013d000000000034001a000001d30000413d00000000013400190000000202000029000000000021004b0000031e0000a13d000000000142004b000001d30000413d000400000001001d0000000001000411000000000010043f0000000401000039000000200010043f00000000010004140000017b0010009c0000017b01008041000000c001100210000001ab011001c7000080100200003905e805e30000040f0000000100200190000005250000613d000000000101043b000000000201041a0000000403000029000000000032001a000001d30000413d0000000002320019000000000021041b0000000301000039000000000101041a000000000031001a000001d30000413d00000000013100190000000302000039000000000012041b000000400400043d00000044014000390000000000310435000000240140003900000000020004100000000000210435000001ac010000410000000000140435000300000004001d0000000401400039000000000200041100000000002104350000018a01000041000000000010044300000000010004120000000400100443000000240000044300000000010004140000017b0010009c0000017b01008041000000c0011002100000018b011001c7000080050200003905e805e30000040f0000000100200190000005270000613d000000000201043b00000003010000290000017b0010009c0000017b01008041000000400110021000000000030004140000017b0030009c0000017b03008041000000c003300210000000000113019f000001ad011001c70000017e0220019705e805de0000040f00000060031002700000017b03300197000000200030008c000000200400003900000000040340190000001f0640018f000000200740019000000003057000290000036f0000613d000000000801034f0000000309000029000000008a08043c0000000009a90436000000000059004b0000036b0000c13d000000000006004b0000037c0000613d000000000771034f0000000306600210000000000805043300000000086801cf000000000868022f000000000707043b0000010006600089000000000767022f00000000066701cf000000000686019f000000000065043500000001002001900000048e0000613d0000001f01400039000000600210018f0000000301200029000000000021004b00000000020000390000000102004039000001ae0010009c000005520000213d0000000100200190000005520000c13d000000400010043f000000200030008c000005250000413d00000003020000290000000002020433000000000002004b0000000003000039000000010300c039000000000032004b000005250000c13d0000000302000039000000000202041a00000020031000390000000000230435000000040200002900000000002104350000017b0010009c0000017b01008041000000400110021000000000020004140000017b0020009c0000017b02008041000000c002200210000000000112019f000001ab011001c70000800d020000390000000203000039000001af04000041000000000500041105e805de0000040f0000000100200190000005250000613d000000400100043d000000040200002900000000002104350000017b0010009c0000017b010080410000004001100210000001aa011001c7000005e90001042e000001c201000041000000000010043f000001bc01000041000005ea0001043000000180011001c700008009020000390000000004000411000000000500001905e805de0000040f00000060031002700000017b033001980000044d0000c13d0000000100200190000005280000613d0000018a01000041000000000010044300000000010004120000000400100443000000240000044300000000010004140000017b0010009c0000017b01008041000000c0011002100000018b011001c7000080050200003905e805e30000040f0000000100200190000005270000613d000000000201043b000000400400043d000400000004001d000001c70100004100000000001404350000000401400039000000000300041000000000003104350000017b0040009c0000017b010000410000000001044019000000400110021000000000030004140000017b0030009c0000017b03008041000000c003300210000000000113019f000001a8011001c70000017e02200197000200000002001d05e805e30000040f00000060031002700000017b03300197000000200030008c000000200400003900000000040340190000001f0640018f0000002007400190000000040b0000290000000405700029000003f10000613d000000000801034f00000000090b0019000000008a08043c0000000009a90436000000000059004b000003ed0000c13d000000000006004b000003fe0000613d000000000771034f0000000306600210000000000805043300000000086801cf000000000868022f000000000707043b0000010006600089000000000767022f00000000066701cf000000000686019f000000000065043500000001002001900000049a0000613d0000001f01400039000000600110018f0000000002b10019000000000012004b00000000010000390000000101004039000300000002001d000001ae0020009c000005520000213d0000000100100190000005520000c13d0000000301000029000000400010043f000000200030008c000005250000413d00000000010b0433000000030300002900000024023000390000000000120435000001bf01000041000000000013043500000000010004110000017e01100197000000040230003900000000001204350000017b0030009c0000017b010000410000000001034019000000400110021000000000020004140000017b0020009c0000017b02008041000000c002200210000000000112019f000001c0011001c7000000020200002905e805de0000040f00000060031002700000017b03300197000000200030008c000000200400003900000000040340190000001f0540018f000000000a04001900000020064001900000000304600029000004350000613d000000000701034f0000000308000029000000007907043c0000000008980436000000000048004b000004310000c13d000000000005004b000004420000613d000000000661034f0000000305500210000000000704043300000000075701cf000000000757022f000000000606043b0000010005500089000000000656022f00000000055601cf000000000575019f00000000005404350000000100200190000005640000613d000000030100002900000000020a001900040000000a001d05e805700000040f0000000301000029000000040210002905e805820000040f0000000001000019000005e90001042e0000001f043000390000017c044001970000003f04400039000001be04400197000000400500043d0000000004450019000000000054004b00000000060000390000000106004039000001ae0040009c000005520000213d0000000100600190000005520000c13d000000400040043f0000001f0430018f00000000063504360000017d053001980000000003560019000004650000613d000000000701034f000000007807043c0000000006860436000000000036004b000004610000c13d000000000004004b000003bc0000613d000000000151034f0000000304400210000000000503043300000000054501cf000000000545022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000151019f0000000000130435000003bc0000013d0000000001000411000000000010043f0000000601000039000000200010043f00000000010004140000017b0010009c0000017b01008041000000c001100210000001ab011001c7000080100200003905e805e30000040f0000000100200190000005250000613d000000030300002900000004023000b9000001ba0320012a000000000101043b000400000003001d000000000031041b00000000010004140000017b0010009c0000017b01008041000000c001100210000001bd0020009c000004b80000213d0000000002000411000004bd0000013d0000001f0530018f0000017d06300198000000400200043d0000000004620019000004a50000613d000000000701034f0000000008020019000000007907043c0000000008980436000000000048004b000004950000c13d000004a50000013d0000001f0530018f0000017d06300198000000400200043d0000000004620019000004a50000613d000000000701034f0000000008020019000000007907043c0000000008980436000000000048004b000004a10000c13d000000000005004b000004b20000613d000000000161034f0000000305500210000000000604043300000000065601cf000000000656022f000000000101043b0000010005500089000000000151022f00000000015101cf000000000161019f000000000014043500000060013002100000017b0020009c0000017b020080410000004002200210000000000112019f000005ea0001043000000180011001c7000080090200003900000004030000290000000004000411000000000500001905e805de0000040f00000060031002700000017b033001980000052c0000c13d0000000100200190000005280000613d000000400300043d000000240130003900000002020000290000000000210435000001bf01000041000000000013043500000000010004110000017e01100197000300000003001d000000040230003900000000001204350000018a01000041000000000010044300000000010004120000000400100443000000240000044300000000010004140000017b0010009c0000017b01008041000000c0011002100000018b011001c7000080050200003905e805e30000040f0000000100200190000005270000613d000000000201043b00000003010000290000017b0010009c0000017b01008041000000400110021000000000030004140000017b0030009c0000017b03008041000000c003300210000000000113019f000001c0011001c70000017e0220019705e805de0000040f00000060031002700000017b03300197000000200030008c000000200400003900000000040340190000001f0640018f00000020074001900000000305700029000004f80000613d000000000801034f0000000309000029000000008a08043c0000000009a90436000000000059004b000004f40000c13d000000000006004b000005050000613d000000000771034f0000000306600210000000000805043300000000086801cf000000000868022f000000000707043b0000010006600089000000000767022f00000000066701cf000000000686019f00000000006504350000000100200190000005580000613d0000001f01400039000000600210018f0000000301200029000000000021004b00000000020000390000000102004039000001ae0010009c000005520000213d0000000100200190000005520000c13d000000400010043f000000200030008c000005250000413d00000003020000290000000002020433000000000002004b0000000003000039000000010300c039000000000032004b000005250000c13d000000200210003900000002030000290000000000320435000000040200002900000000002104350000017b0010009c0000017b010080410000004001100210000001c1011001c7000005e90001042e0000000001000019000005ea00010430000000000001042f000001c601000041000000000010043f0000018701000041000005ea000104300000001f043000390000017c044001970000003f04400039000001be04400197000000400500043d0000000004450019000000000054004b00000000060000390000000106004039000001ae0040009c000005520000213d0000000100600190000005520000c13d000000400040043f0000001f0430018f00000000063504360000017d053001980000000003560019000005440000613d000000000701034f000000007807043c0000000006860436000000000036004b000005400000c13d000000000004004b000004c10000613d000000000151034f0000000304400210000000000503043300000000054501cf000000000545022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000151019f0000000000130435000004c10000013d000001c801000041000000000010043f0000004101000039000000040010043f000001a801000041000005ea000104300000001f0530018f0000017d06300198000000400200043d0000000004620019000004a50000613d000000000701034f0000000008020019000000007907043c0000000008980436000000000048004b0000055f0000c13d000004a50000013d0000001f0530018f0000017d06300198000000400200043d0000000004620019000004a50000613d000000000701034f0000000008020019000000007907043c0000000008980436000000000048004b0000056b0000c13d000004a50000013d0000001f02200039000001cb022001970000000001120019000000000021004b00000000020000390000000102004039000001ae0010009c0000057c0000213d00000001002001900000057c0000c13d000000400010043f000000000001042d000001c801000041000000000010043f0000004101000039000000040010043f000001a801000041000005ea000104300000000002120049000001cc0020009c0000058e0000213d0000001f0020008c0000058e0000a13d0000000001010433000000000001004b0000000002000039000000010200c039000000000021004b0000058e0000c13d000000000001042d0000000001000019000005ea00010430000000000100041a0000017e021001970000000001000411000000000012004b000005960000c13d000000000001042d000001a702000041000000000020043f000000040010043f000001a801000041000005ea00010430000001b90010009c000005a20000213d000000000002004b000005a20000613d000001ba011000d100000000012100d9000000000001042d000001c201000041000000000010043f000001bc01000041000005ea00010430000000000002004b000005ab0000613d000001cd03200129000000000013004b000005ae0000413d00000000011200a9000001ba0110012a000000000001042d000001bb01000041000000000010043f000001bc01000041000005ea00010430000000000001042f00000000010004140000017b0010009c0000017b01008041000000c001100210000001ab011001c7000080100200003905e805e30000040f0000000100200190000005be0000613d000000000101043b000000000001042d0000000001000019000005ea0001043000000000050100190000000000200443000000050030008c000005ce0000413d000000040100003900000000020000190000000506200210000000000664001900000005066002700000000006060031000000000161043a0000000102200039000000000031004b000005c60000413d0000017b0030009c0000017b03008041000000600130021000000000020004140000017b0020009c0000017b02008041000000c002200210000000000112019f000001ce011001c7000000000205001905e805e30000040f0000000100200190000005dd0000613d000000000101043b000000000001042d000000000001042f000005e1002104210000000102000039000000000001042d0000000002000019000000000001042d000005e6002104230000000102000039000000000001042d0000000002000019000000000001042d000005e800000432000005e90001042e000005ea00010430000000000000000000000000000000000000000000000000000000000000000000000000ffffffff00000000000000000000000000000000000000000000000000000001ffffffe000000000000000000000000000000000000000000000000000000000ffffffe0000000000000000000000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000008be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0796b89b91644bc98cd93958e4c9038275d622183e25ac5af08cc6b5d9553913202000002000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000000000000878678326eac90000000000002000000000000000000000000000000c0000001000000000000000000771b41b7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004000000000000000000000000e6c4247b0000000000000000000000000000000000000000000000000000000081bf7f6700000000000000000000000000000000000000000000000000000000310ab089e4439a4c15d089f94afb7896ff553aecb10793d0ab882de59d99a32e020000020000000000000000000000000000004400000000000000000000000000000000000000000000000000000000000000000000000000000000715018a500000000000000000000000000000000000000000000000000000000b6b55f2400000000000000000000000000000000000000000000000000000000da40ef7f00000000000000000000000000000000000000000000000000000000da40ef8000000000000000000000000000000000000000000000000000000000f2fde38b00000000000000000000000000000000000000000000000000000000fada51e600000000000000000000000000000000000000000000000000000000b6b55f2500000000000000000000000000000000000000000000000000000000d59624b4000000000000000000000000000000000000000000000000000000007d882096000000000000000000000000000000000000000000000000000000007d882097000000000000000000000000000000000000000000000000000000008da5cb5b000000000000000000000000000000000000000000000000000000009ec5a89400000000000000000000000000000000000000000000000000000000715018a600000000000000000000000000000000000000000000000000000000763265de000000000000000000000000000000000000000000000000000000004e71d92c000000000000000000000000000000000000000000000000000000005a5cced5000000000000000000000000000000000000000000000000000000005a5cced6000000000000000000000000000000000000000000000000000000005d4954110000000000000000000000000000000000000000000000000000000065a64668000000000000000000000000000000000000000000000000000000004e71d92d0000000000000000000000000000000000000000000000000000000058950c220000000000000000000000000000000000000000000000000000000023548b8a0000000000000000000000000000000000000000000000000000000023548b8b000000000000000000000000000000000000000000000000000000003b7fcdca0000000000000000000000000000000000000000000000000000000000c35fc1000000000000000000000000000000000000000000000000000000000ba36dcd0000000000000000000000000000000000000020000000800000000000000000118cdaa70000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000240000000000000000000000001e4fbdf7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020000000000000000000000000020000000000000000000000000000000000004000000000000000000000000023b872dd000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000064000000000000000000000000000000000000000000000000000000000000000000000000ffffffffffffffffa91e0c3165215fe453f5bf3de083d5fd6c4e62c491849155a042a647588c53a0c2c77a0e00000000000000000000000000000000000000000000000000000000f10b176b00000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000002000000000000000000000000064472098d02cd057225435ec65ba18eee60efbd1b9af56f1f4c37a89974edda0cadd5a68000000000000000000000000000000000000000000000000000000008d2cb89d0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000400000008000000000000000006e72b45e00000000000000000000000000000000000000000000000000000000646cf558000000000000000000000000000000000000000000000000000000000000000000000012725dd1d243aba0e75fe645cc4873f9e65afe688c928e1f210000000000000000000000000000000000000000000000000de0b6b3a764000000000000000000000000000000000000000000000000000000000000bac65e5b00000000000000000000000000000000000000040000001c00000000000000000000000000000000000000000000000000000000000000000de0b6b3a763ffff00000000000000000000000000000000000000000000000000000003ffffffe0a9059cbb0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000440000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000000000000000000000007c5f487dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec39809cc7f708afc65944829bd487b90b72536b1951864fbfc14e125fc972a6507f390200000200000000000000000000000000000024000000000000000000000000750b219c0000000000000000000000000000000000000000000000000000000070a08231000000000000000000000000000000000000000000000000000000004e487b71000000000000000000000000000000000000000000000000000000006fed7d8500000000000000000000000000000000000000000000000000000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe07fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff020000020000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002a8b5e2c3d3b1780426aa7bca0e70b7df836afe48d7fb9a6802547e317440f36

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000000000000000000000000000000000680b9560000000000000000000000000000000000000000000000fe1c215e8f838e00000000000000000000000000000df70075737e9f96b078ab4461eee3e055e061223

-----Decoded View---------------
Arg [0] : _maturityDate (uint256): 1745589600
Arg [1] : _maxCap (uint256): 75000000000000000000000
Arg [2] : _bigcoin (address): 0xDf70075737E9F96B078ab4461EeE3e055E061223

-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 00000000000000000000000000000000000000000000000000000000680b9560
Arg [1] : 000000000000000000000000000000000000000000000fe1c215e8f838e00000
Arg [2] : 000000000000000000000000df70075737e9f96b078ab4461eee3e055e061223


Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.