ETH Price: $2,233.88 (-3.89%)

Token

Poopcoin (POOP)

Overview

Max Total Supply

966,656,698.56459330143540621 POOP

Holders

475

Market

Price

$0.00 @ 0.000000 ETH

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
26,057,679.429355545388172523 POOP

Value
$0.00
0xa3cd4a0a0b55a7b25b3a1e9ffd1c41e9be2c318b
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.

Contract Source Code Verified (Exact Match)

Contract Name:
GameToken

Compiler Version
v0.8.28+commit.7893614a

ZkSolc Version
v1.5.11

Optimization Enabled:
Yes with Mode 3

Other Settings:
cancun EvmVersion
File 1 of 7 : Token.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {FixedPointMathLib} from "../lib/solady/src/utils/FixedPointMathLib.sol";
import {ERC20} from "../lib/solady/src/tokens/ERC20.sol";
import {Game} from "./Game.sol";

contract GameToken is ERC20 {
    Game public immutable game;
    string private _name;
    string private _symbol;
    mapping(address => bool) public hasMinted;

    constructor(address _game, string memory name_, string memory symbol_) {
        game = Game(_game);
        _name = name_;
        _symbol = symbol_;

        // Mint initial supply (25%) to game contract for liquidity
        _mint(address(game), 250_000_000 ether);

        // Burn 50% of supply
        _mint(
            address(0x000000000000000000000000000000000000dEaD),
            500_000_000 ether
        );
    }

    function name() public view override returns (string memory) {
        return _name;
    }

    function symbol() public view override returns (string memory) {
        return _symbol;
    }

    function claimTokensFromGameParticipant(address participant) external {
        require(!hasMinted[participant], "Tokens already claimed");

        // Mark as minted before the mint to prevent reentrancy
        hasMinted[participant] = true;

        // Get this participants share of the prize pool
        uint256 amountToMint = game.determineTokenDistribution(participant);

        // Mint new tokens to the participant
        _mint(participant, amountToMint);
    }

    function crackAnswer() external pure returns (string memory) {
        return "SIKE";
    }
}

File 2 of 7 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The mantissa is too big to fit.
    error MantissaOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, due to an multiplication overflow.
    error SMulWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error SDivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The input outside the acceptable domain.
    error OutOfDomain();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if gt(x, div(not(0), y)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if iszero(eq(div(z, y), x)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, WAD)
            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
            if iszero(mul(y, eq(sdiv(z, WAD), x))) {
                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    /// Note: This function is an approximation.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is less than 0.5 we return zero.
            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
            if (x <= -41446531673892822313) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // `k` is in the range `[-61, 195]`.

            // Evaluate using a (6, 7)-term rational approximation.
            // `p` is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already `2**96` too large.
                r := sdiv(p, q)
            }

            // r should be in the range `(0.09, 0.25) * 2**96`.

            // We now need to multiply r by:
            // - The scale factor `s ≈ 6.031367120`.
            // - The `2**k` factor from the range reduction.
            // - The `1e18 / 2**96` factor for base conversion.
            // We do this all at once, with an intermediate result in `2**213`
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function lnWad(int256 x) internal pure returns (int256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
            // We do this by multiplying by `2**96 / 10**18`. But since
            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
            // and add `ln(2**96 / 10**18)` at the end.

            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // We place the check here for more optimal stack operations.
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
            // forgefmt: disable-next-item
            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x := shr(159, shl(r, x))

            // Evaluate using a (8, 8)-term rational approximation.
            // `p` is made monic, we will multiply by a scale factor later.
            // forgefmt: disable-next-item
            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                sar(96, mul(add(43456485725739037958740375743393,
                sar(96, mul(add(24828157081833163892658089445524,
                sar(96, mul(add(3273285459638523848632254066296,
                    x), x))), x))), x)), 11111509109440967052023855526967)
            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.

            // `q` is monic by convention.
            let q := add(5573035233440673466300451813936, x)
            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
            q := add(909429971244387300277376558375, sar(96, mul(x, q)))

            // `p / q` is in the range `(0, 0.125) * 2**96`.

            // Finalization, we need to:
            // - Multiply by the scale factor `s = 5.549…`.
            // - Add `ln(2**96 / 10**18)`.
            // - Add `k * ln(2)`.
            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.

            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already `2**96` too large.
            p := sdiv(p, q)
            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
            p := mul(1677202110996718588342820967067443963516166, p)
            // Add `ln(2) * k * 5**18 * 2**192`.
            // forgefmt: disable-next-item
            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
            // Base conversion: mul `2**18 / 2**192`.
            r := sar(174, p)
        }
    }

    /// @dev Returns `W_0(x)`, denominated in `WAD`.
    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
    /// a.k.a. Product log function. This is an approximation of the principal branch.
    /// Note: This function is an approximation. Monotonically increasing.
    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
        // forgefmt: disable-next-item
        unchecked {
            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
            (int256 wad, int256 p) = (int256(WAD), x);
            uint256 c; // Whether we need to avoid catastrophic cancellation.
            uint256 i = 4; // Number of iterations.
            if (w <= 0x1ffffffffffff) {
                if (-0x4000000000000 <= w) {
                    i = 1; // Inputs near zero only take one step to converge.
                } else if (w <= -0x3ffffffffffffff) {
                    i = 32; // Inputs near `-1/e` take very long to converge.
                }
            } else if (uint256(w >> 63) == uint256(0)) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Inline log2 for more performance, since the range is small.
                    let v := shr(49, w)
                    let l := shl(3, lt(0xff, v))
                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                    c := gt(l, 60)
                    i := add(2, add(gt(l, 53), c))
                }
            } else {
                int256 ll = lnWad(w = lnWad(w));
                /// @solidity memory-safe-assembly
                assembly {
                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                    i := add(3, iszero(shr(68, x)))
                    c := iszero(shr(143, x))
                }
                if (c == uint256(0)) {
                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := mul(w, div(e, wad))
                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != uint256(0));
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    return w;
                }
            }
            do { // Otherwise, use Halley's for faster convergence.
                int256 e = expWad(w);
                /// @solidity memory-safe-assembly
                assembly {
                    let t := add(w, wad)
                    let s := sub(mul(w, e), mul(x, wad))
                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                }
                if (p <= w) break;
                p = w;
            } while (--i != c);
            /// @solidity memory-safe-assembly
            assembly {
                w := sub(w, sgt(w, 2))
            }
            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
            if (c == uint256(0)) return w;
            int256 t = w | 1;
            /// @solidity memory-safe-assembly
            assembly {
                x := sdiv(mul(x, wad), t)
            }
            x = (t * (wad + lnWad(x)));
            /// @solidity memory-safe-assembly
            assembly {
                w := sdiv(x, add(wad, t))
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `a * b == x * y`, with full precision.
    function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0))))
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // 512-bit multiply `[p1 p0] = x * y`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = p1 * 2**256 + p0`.

            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`.
            for {} 1 {} {
                // If overflows.
                if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.

                    /*------------------- 512 by 256 division --------------------*/

                    // Make division exact by subtracting the remainder from `[p1 p0]`.
                    let r := mulmod(x, y, d) // Compute remainder using mulmod.
                    let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                    // Make sure `z` is less than `2**256`. Also prevents `d == 0`.
                    // Placing the check here seems to give more optimal stack operations.
                    if iszero(gt(d, p1)) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    d := div(d, t) // Divide `d` by `t`, which is a power of two.
                    // Invert `d mod 2**256`
                    // Now that `d` is an odd number, it has an inverse
                    // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                    // Compute the inverse by starting with a seed that is correct
                    // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                    let inv := xor(2, mul(3, d))
                    // Now use Newton-Raphson iteration to improve the precision.
                    // Thanks to Hensel's lifting lemma, this also works in modular
                    // arithmetic, doubling the correct bits in each step.
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                    z :=
                        mul(
                            // Divide [p1 p0] by the factors of two.
                            // Shift in bits from `p1` into `p0`. For this we need
                            // to flip `t` such that it is `2**256 / t`.
                            or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                            mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                        )
                    break
                }
                z := div(z, d)
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
    /// Performs the full 512 bit calculation regardless.
    function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            let mm := mulmod(x, y, not(0))
            let p1 := sub(mm, add(z, lt(mm, z)))
            let t := and(d, sub(0, d))
            let r := mulmod(x, y, d)
            d := div(d, t)
            let inv := xor(2, mul(3, d))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            z :=
                mul(
                    or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                    mul(sub(2, mul(d, inv)), inv)
                )
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        z = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                z := add(z, 1)
                if iszero(z) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Calculates `floor(x * y / 2 ** n)` with full precision.
    /// Throws if result overflows a uint256.
    /// Credit to Philogy under MIT license:
    /// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol
    function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`.
            for {} 1 {} {
                if iszero(or(iszero(x), eq(div(z, x), y))) {
                    let k := and(n, 0xff) // `n`, cleaned.
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
                    //         |      p1     |      z     |
                    // Before: | p1_0 ¦ p1_1 | z_0  ¦ z_1 |
                    // Final:  |   0  ¦ p1_0 | p1_1 ¦ z_0 |
                    // Check that final `z` doesn't overflow by checking that p1_0 = 0.
                    if iszero(shr(k, p1)) {
                        z := add(shl(sub(256, k), p1), shr(k, z))
                        break
                    }
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
                z := shr(and(n, 0xff), z)
                break
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(z, d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(z, d))), div(z, d))
        }
    }

    /// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`.
    function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) {
        /// @solidity memory-safe-assembly
        assembly {
            let g := n
            let r := mod(a, n)
            for { let y := 1 } 1 {} {
                let q := div(g, r)
                let t := g
                g := r
                r := sub(t, mul(r, q))
                let u := x
                x := y
                y := sub(u, mul(y, q))
                if iszero(r) { break }
            }
            x := mul(eq(g, 1), add(x, mul(slt(x, 0), n)))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`. Alias for `saturatingSub`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function saturatingSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `min(2 ** 256 - 1, x + y)`.
    function saturatingAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(sub(0, lt(add(x, y), x)), add(x, y))
        }
    }

    /// @dev Returns `min(2 ** 256 - 1, x * y)`.
    function saturatingMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(sub(or(iszero(x), eq(div(mul(x, y), x), y)), 1), mul(x, y))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, address x, address y) internal pure returns (address z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if x {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`, rounded down.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`, rounded down.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // Makeshift lookup table to nudge the approximate log2 result.
            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
            // Newton-Raphson's.
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            // Round down.
            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
            z = (1 + sqrt(x)) * 10 ** 9;
            z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
        }
        /// @solidity memory-safe-assembly
        assembly {
            z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
            z = (1 + cbrt(x)) * 10 ** 12;
            z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
        }
        /// @solidity memory-safe-assembly
        assembly {
            let p := x
            for {} 1 {} {
                if iszero(shr(229, p)) {
                    if iszero(shr(199, p)) {
                        p := mul(p, 100000000000000000) // 10 ** 17.
                        break
                    }
                    p := mul(p, 100000000) // 10 ** 8.
                    break
                }
                if iszero(shr(249, p)) { p := mul(p, 100) }
                break
            }
            let t := mulmod(mul(z, z), z, p)
            z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := 1
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for {} x { x := sub(x, 1) } { z := mul(z, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
        /// @solidity memory-safe-assembly
        assembly {
            mantissa := x
            if mantissa {
                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                    exponent := 33
                }
                if iszero(mod(mantissa, 10000000000000000000)) {
                    mantissa := div(mantissa, 10000000000000000000)
                    exponent := add(exponent, 19)
                }
                if iszero(mod(mantissa, 1000000000000)) {
                    mantissa := div(mantissa, 1000000000000)
                    exponent := add(exponent, 12)
                }
                if iszero(mod(mantissa, 1000000)) {
                    mantissa := div(mantissa, 1000000)
                    exponent := add(exponent, 6)
                }
                if iszero(mod(mantissa, 10000)) {
                    mantissa := div(mantissa, 10000)
                    exponent := add(exponent, 4)
                }
                if iszero(mod(mantissa, 100)) {
                    mantissa := div(mantissa, 100)
                    exponent := add(exponent, 2)
                }
                if iszero(mod(mantissa, 10)) {
                    mantissa := div(mantissa, 10)
                    exponent := add(exponent, 1)
                }
            }
        }
    }

    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
    /// enough to fit in the desired unsigned integer type:
    /// ```
    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
    /// ```
    function packSci(uint256 x) internal pure returns (uint256 packed) {
        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
        /// @solidity memory-safe-assembly
        assembly {
            if shr(249, x) {
                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                revert(0x1c, 0x04)
            }
            packed := or(shl(7, x), packed)
        }
    }

    /// @dev Convenience function for unpacking a packed number from `packSci`.
    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
        unchecked {
            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards zero.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        unchecked {
            z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
        internal
        pure
        returns (uint256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        unchecked {
            if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
            return a - fullMulDiv(a - b, t - begin, end - begin);
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
        internal
        pure
        returns (int256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        // forgefmt: disable-next-item
        unchecked {
            if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
                uint256(t - begin), uint256(end - begin)));
            return int256(uint256(a) - fullMulDiv(uint256(a - b),
                uint256(t - begin), uint256(end - begin)));
        }
    }

    /// @dev Returns if `x` is an even number. Some people may need this.
    function isEven(uint256 x) internal pure returns (bool) {
        return x & uint256(1) == uint256(0);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}

File 3 of 7 : ERC20.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Simple ERC20 + EIP-2612 implementation.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol)
///
/// @dev Note:
/// - The ERC20 standard allows minting and transferring to and from the zero address,
///   minting and transferring zero tokens, as well as self-approvals.
///   For performance, this implementation WILL NOT revert for such actions.
///   Please add any checks with overrides if desired.
/// - The `permit` function uses the ecrecover precompile (0x1).
///
/// If you are overriding:
/// - NEVER violate the ERC20 invariant:
///   the total sum of all balances must be equal to `totalSupply()`.
/// - Check that the overridden function is actually used in the function you want to
///   change the behavior of. Much of the code has been manually inlined for performance.
abstract contract ERC20 {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The total supply has overflowed.
    error TotalSupplyOverflow();

    /// @dev The allowance has overflowed.
    error AllowanceOverflow();

    /// @dev The allowance has underflowed.
    error AllowanceUnderflow();

    /// @dev Insufficient balance.
    error InsufficientBalance();

    /// @dev Insufficient allowance.
    error InsufficientAllowance();

    /// @dev The permit is invalid.
    error InvalidPermit();

    /// @dev The permit has expired.
    error PermitExpired();

    /// @dev The allowance of Permit2 is fixed at infinity.
    error Permit2AllowanceIsFixedAtInfinity();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Emitted when `amount` tokens is transferred from `from` to `to`.
    event Transfer(address indexed from, address indexed to, uint256 amount);

    /// @dev Emitted when `amount` tokens is approved by `owner` to be used by `spender`.
    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`.
    uint256 private constant _TRANSFER_EVENT_SIGNATURE =
        0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;

    /// @dev `keccak256(bytes("Approval(address,address,uint256)"))`.
    uint256 private constant _APPROVAL_EVENT_SIGNATURE =
        0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The storage slot for the total supply.
    uint256 private constant _TOTAL_SUPPLY_SLOT = 0x05345cdf77eb68f44c;

    /// @dev The balance slot of `owner` is given by:
    /// ```
    ///     mstore(0x0c, _BALANCE_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let balanceSlot := keccak256(0x0c, 0x20)
    /// ```
    uint256 private constant _BALANCE_SLOT_SEED = 0x87a211a2;

    /// @dev The allowance slot of (`owner`, `spender`) is given by:
    /// ```
    ///     mstore(0x20, spender)
    ///     mstore(0x0c, _ALLOWANCE_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let allowanceSlot := keccak256(0x0c, 0x34)
    /// ```
    uint256 private constant _ALLOWANCE_SLOT_SEED = 0x7f5e9f20;

    /// @dev The nonce slot of `owner` is given by:
    /// ```
    ///     mstore(0x0c, _NONCES_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let nonceSlot := keccak256(0x0c, 0x20)
    /// ```
    uint256 private constant _NONCES_SLOT_SEED = 0x38377508;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev `(_NONCES_SLOT_SEED << 16) | 0x1901`.
    uint256 private constant _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX = 0x383775081901;

    /// @dev `keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")`.
    bytes32 private constant _DOMAIN_TYPEHASH =
        0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f;

    /// @dev `keccak256("1")`.
    /// If you need to use a different version, override `_versionHash`.
    bytes32 private constant _DEFAULT_VERSION_HASH =
        0xc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6;

    /// @dev `keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")`.
    bytes32 private constant _PERMIT_TYPEHASH =
        0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;

    /// @dev The canonical Permit2 address.
    /// For signature-based allowance granting for single transaction ERC20 `transferFrom`.
    /// To enable, override `_givePermit2InfiniteAllowance()`.
    /// [Github](https://github.com/Uniswap/permit2)
    /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3)
    address internal constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ERC20 METADATA                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the name of the token.
    function name() public view virtual returns (string memory);

    /// @dev Returns the symbol of the token.
    function symbol() public view virtual returns (string memory);

    /// @dev Returns the decimals places of the token.
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           ERC20                            */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the amount of tokens in existence.
    function totalSupply() public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(_TOTAL_SUPPLY_SLOT)
        }
    }

    /// @dev Returns the amount of tokens owned by `owner`.
    function balanceOf(address owner) public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /// @dev Returns the amount of tokens that `spender` can spend on behalf of `owner`.
    function allowance(address owner, address spender)
        public
        view
        virtual
        returns (uint256 result)
    {
        if (_givePermit2InfiniteAllowance()) {
            if (spender == _PERMIT2) return type(uint256).max;
        }
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x34))
        }
    }

    /// @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
    ///
    /// Emits a {Approval} event.
    function approve(address spender, uint256 amount) public virtual returns (bool) {
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                // If `spender == _PERMIT2 && amount != type(uint256).max`.
                if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(amount)))) {
                    mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                    revert(0x1c, 0x04)
                }
            }
        }
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the allowance slot and store the amount.
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, caller())
            sstore(keccak256(0x0c, 0x34), amount)
            // Emit the {Approval} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, caller(), shr(96, mload(0x2c)))
        }
        return true;
    }

    /// @dev Transfer `amount` tokens from the caller to `to`.
    ///
    /// Requirements:
    /// - `from` must at least have `amount`.
    ///
    /// Emits a {Transfer} event.
    function transfer(address to, uint256 amount) public virtual returns (bool) {
        _beforeTokenTransfer(msg.sender, to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, caller())
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Compute the balance slot of `to`.
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance of `to`.
            // Will not overflow because the sum of all user balances
            // cannot exceed the maximum uint256 value.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, caller(), shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(msg.sender, to, amount);
        return true;
    }

    /// @dev Transfers `amount` tokens from `from` to `to`.
    ///
    /// Note: Does not update the allowance if it is the maximum uint256 value.
    ///
    /// Requirements:
    /// - `from` must at least have `amount`.
    /// - The caller must have at least `amount` of allowance to transfer the tokens of `from`.
    ///
    /// Emits a {Transfer} event.
    function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) {
        _beforeTokenTransfer(from, to, amount);
        // Code duplication is for zero-cost abstraction if possible.
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                let from_ := shl(96, from)
                if iszero(eq(caller(), _PERMIT2)) {
                    // Compute the allowance slot and load its value.
                    mstore(0x20, caller())
                    mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED))
                    let allowanceSlot := keccak256(0x0c, 0x34)
                    let allowance_ := sload(allowanceSlot)
                    // If the allowance is not the maximum uint256 value.
                    if not(allowance_) {
                        // Revert if the amount to be transferred exceeds the allowance.
                        if gt(amount, allowance_) {
                            mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                            revert(0x1c, 0x04)
                        }
                        // Subtract and store the updated allowance.
                        sstore(allowanceSlot, sub(allowance_, amount))
                    }
                }
                // Compute the balance slot and load its value.
                mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
                let fromBalanceSlot := keccak256(0x0c, 0x20)
                let fromBalance := sload(fromBalanceSlot)
                // Revert if insufficient balance.
                if gt(amount, fromBalance) {
                    mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated balance.
                sstore(fromBalanceSlot, sub(fromBalance, amount))
                // Compute the balance slot of `to`.
                mstore(0x00, to)
                let toBalanceSlot := keccak256(0x0c, 0x20)
                // Add and store the updated balance of `to`.
                // Will not overflow because the sum of all user balances
                // cannot exceed the maximum uint256 value.
                sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
                // Emit the {Transfer} event.
                mstore(0x20, amount)
                log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                let from_ := shl(96, from)
                // Compute the allowance slot and load its value.
                mstore(0x20, caller())
                mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED))
                let allowanceSlot := keccak256(0x0c, 0x34)
                let allowance_ := sload(allowanceSlot)
                // If the allowance is not the maximum uint256 value.
                if not(allowance_) {
                    // Revert if the amount to be transferred exceeds the allowance.
                    if gt(amount, allowance_) {
                        mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                        revert(0x1c, 0x04)
                    }
                    // Subtract and store the updated allowance.
                    sstore(allowanceSlot, sub(allowance_, amount))
                }
                // Compute the balance slot and load its value.
                mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
                let fromBalanceSlot := keccak256(0x0c, 0x20)
                let fromBalance := sload(fromBalanceSlot)
                // Revert if insufficient balance.
                if gt(amount, fromBalance) {
                    mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated balance.
                sstore(fromBalanceSlot, sub(fromBalance, amount))
                // Compute the balance slot of `to`.
                mstore(0x00, to)
                let toBalanceSlot := keccak256(0x0c, 0x20)
                // Add and store the updated balance of `to`.
                // Will not overflow because the sum of all user balances
                // cannot exceed the maximum uint256 value.
                sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
                // Emit the {Transfer} event.
                mstore(0x20, amount)
                log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
            }
        }
        _afterTokenTransfer(from, to, amount);
        return true;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          EIP-2612                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev For more performance, override to return the constant value
    /// of `keccak256(bytes(name()))` if `name()` will never change.
    function _constantNameHash() internal view virtual returns (bytes32 result) {}

    /// @dev If you need a different value, override this function.
    function _versionHash() internal view virtual returns (bytes32 result) {
        result = _DEFAULT_VERSION_HASH;
    }

    /// @dev For inheriting contracts to increment the nonce.
    function _incrementNonce(address owner) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x0c, _NONCES_SLOT_SEED)
            mstore(0x00, owner)
            let nonceSlot := keccak256(0x0c, 0x20)
            sstore(nonceSlot, add(1, sload(nonceSlot)))
        }
    }

    /// @dev Returns the current nonce for `owner`.
    /// This value is used to compute the signature for EIP-2612 permit.
    function nonces(address owner) public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the nonce slot and load its value.
            mstore(0x0c, _NONCES_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /// @dev Sets `value` as the allowance of `spender` over the tokens of `owner`,
    /// authorized by a signed approval by `owner`.
    ///
    /// Emits a {Approval} event.
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                // If `spender == _PERMIT2 && value != type(uint256).max`.
                if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(value)))) {
                    mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                    revert(0x1c, 0x04)
                }
            }
        }
        bytes32 nameHash = _constantNameHash();
        //  We simply calculate it on-the-fly to allow for cases where the `name` may change.
        if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name()));
        bytes32 versionHash = _versionHash();
        /// @solidity memory-safe-assembly
        assembly {
            // Revert if the block timestamp is greater than `deadline`.
            if gt(timestamp(), deadline) {
                mstore(0x00, 0x1a15a3cc) // `PermitExpired()`.
                revert(0x1c, 0x04)
            }
            let m := mload(0x40) // Grab the free memory pointer.
            // Clean the upper 96 bits.
            owner := shr(96, shl(96, owner))
            spender := shr(96, shl(96, spender))
            // Compute the nonce slot and load its value.
            mstore(0x0e, _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX)
            mstore(0x00, owner)
            let nonceSlot := keccak256(0x0c, 0x20)
            let nonceValue := sload(nonceSlot)
            // Prepare the domain separator.
            mstore(m, _DOMAIN_TYPEHASH)
            mstore(add(m, 0x20), nameHash)
            mstore(add(m, 0x40), versionHash)
            mstore(add(m, 0x60), chainid())
            mstore(add(m, 0x80), address())
            mstore(0x2e, keccak256(m, 0xa0))
            // Prepare the struct hash.
            mstore(m, _PERMIT_TYPEHASH)
            mstore(add(m, 0x20), owner)
            mstore(add(m, 0x40), spender)
            mstore(add(m, 0x60), value)
            mstore(add(m, 0x80), nonceValue)
            mstore(add(m, 0xa0), deadline)
            mstore(0x4e, keccak256(m, 0xc0))
            // Prepare the ecrecover calldata.
            mstore(0x00, keccak256(0x2c, 0x42))
            mstore(0x20, and(0xff, v))
            mstore(0x40, r)
            mstore(0x60, s)
            let t := staticcall(gas(), 1, 0x00, 0x80, 0x20, 0x20)
            // If the ecrecover fails, the returndatasize will be 0x00,
            // `owner` will be checked if it equals the hash at 0x00,
            // which evaluates to false (i.e. 0), and we will revert.
            // If the ecrecover succeeds, the returndatasize will be 0x20,
            // `owner` will be compared against the returned address at 0x20.
            if iszero(eq(mload(returndatasize()), owner)) {
                mstore(0x00, 0xddafbaef) // `InvalidPermit()`.
                revert(0x1c, 0x04)
            }
            // Increment and store the updated nonce.
            sstore(nonceSlot, add(nonceValue, t)) // `t` is 1 if ecrecover succeeds.
            // Compute the allowance slot and store the value.
            // The `owner` is already at slot 0x20.
            mstore(0x40, or(shl(160, _ALLOWANCE_SLOT_SEED), spender))
            sstore(keccak256(0x2c, 0x34), value)
            // Emit the {Approval} event.
            log3(add(m, 0x60), 0x20, _APPROVAL_EVENT_SIGNATURE, owner, spender)
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero pointer.
        }
    }

    /// @dev Returns the EIP-712 domain separator for the EIP-2612 permit.
    function DOMAIN_SEPARATOR() public view virtual returns (bytes32 result) {
        bytes32 nameHash = _constantNameHash();
        //  We simply calculate it on-the-fly to allow for cases where the `name` may change.
        if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name()));
        bytes32 versionHash = _versionHash();
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Grab the free memory pointer.
            mstore(m, _DOMAIN_TYPEHASH)
            mstore(add(m, 0x20), nameHash)
            mstore(add(m, 0x40), versionHash)
            mstore(add(m, 0x60), chainid())
            mstore(add(m, 0x80), address())
            result := keccak256(m, 0xa0)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  INTERNAL MINT FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Mints `amount` tokens to `to`, increasing the total supply.
    ///
    /// Emits a {Transfer} event.
    function _mint(address to, uint256 amount) internal virtual {
        _beforeTokenTransfer(address(0), to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            let totalSupplyBefore := sload(_TOTAL_SUPPLY_SLOT)
            let totalSupplyAfter := add(totalSupplyBefore, amount)
            // Revert if the total supply overflows.
            if lt(totalSupplyAfter, totalSupplyBefore) {
                mstore(0x00, 0xe5cfe957) // `TotalSupplyOverflow()`.
                revert(0x1c, 0x04)
            }
            // Store the updated total supply.
            sstore(_TOTAL_SUPPLY_SLOT, totalSupplyAfter)
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, 0, shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(address(0), to, amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  INTERNAL BURN FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Burns `amount` tokens from `from`, reducing the total supply.
    ///
    /// Emits a {Transfer} event.
    function _burn(address from, uint256 amount) internal virtual {
        _beforeTokenTransfer(from, address(0), amount);
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, from)
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Subtract and store the updated total supply.
            sstore(_TOTAL_SUPPLY_SLOT, sub(sload(_TOTAL_SUPPLY_SLOT), amount))
            // Emit the {Transfer} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, shl(96, from)), 0)
        }
        _afterTokenTransfer(from, address(0), amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                INTERNAL TRANSFER FUNCTIONS                 */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Moves `amount` of tokens from `from` to `to`.
    function _transfer(address from, address to, uint256 amount) internal virtual {
        _beforeTokenTransfer(from, to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            let from_ := shl(96, from)
            // Compute the balance slot and load its value.
            mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Compute the balance slot of `to`.
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance of `to`.
            // Will not overflow because the sum of all user balances
            // cannot exceed the maximum uint256 value.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(from, to, amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                INTERNAL ALLOWANCE FUNCTIONS                */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Updates the allowance of `owner` for `spender` based on spent `amount`.
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        if (_givePermit2InfiniteAllowance()) {
            if (spender == _PERMIT2) return; // Do nothing, as allowance is infinite.
        }
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the allowance slot and load its value.
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, owner)
            let allowanceSlot := keccak256(0x0c, 0x34)
            let allowance_ := sload(allowanceSlot)
            // If the allowance is not the maximum uint256 value.
            if not(allowance_) {
                // Revert if the amount to be transferred exceeds the allowance.
                if gt(amount, allowance_) {
                    mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated allowance.
                sstore(allowanceSlot, sub(allowance_, amount))
            }
        }
    }

    /// @dev Sets `amount` as the allowance of `spender` over the tokens of `owner`.
    ///
    /// Emits a {Approval} event.
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                // If `spender == _PERMIT2 && amount != type(uint256).max`.
                if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(amount)))) {
                    mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                    revert(0x1c, 0x04)
                }
            }
        }
        /// @solidity memory-safe-assembly
        assembly {
            let owner_ := shl(96, owner)
            // Compute the allowance slot and store the amount.
            mstore(0x20, spender)
            mstore(0x0c, or(owner_, _ALLOWANCE_SLOT_SEED))
            sstore(keccak256(0x0c, 0x34), amount)
            // Emit the {Approval} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, shr(96, owner_), shr(96, mload(0x2c)))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     HOOKS TO OVERRIDE                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Hook that is called before any transfer of tokens.
    /// This includes minting and burning.
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /// @dev Hook that is called after any transfer of tokens.
    /// This includes minting and burning.
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          PERMIT2                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns whether to fix the Permit2 contract's allowance at infinity.
    ///
    /// This value should be kept constant after contract initialization,
    /// or else the actual allowance values may not match with the {Approval} events.
    /// For best performance, return a compile-time constant for zero-cost abstraction.
    function _givePermit2InfiniteAllowance() internal view virtual returns (bool) {
        return true;
    }
}

File 4 of 7 : Game.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {FixedPointMathLib} from "../lib/solady/src/utils/FixedPointMathLib.sol";
import {GameToken} from "./Token.sol";
import {IUniswapV2Router02} from "../lib/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol";
import {IUniswapV2Factory} from "../lib/v2-core/contracts/interfaces/IUniswapV2Factory.sol";

contract Game {
    address public owner;
    uint256 public messagePrice;
    uint256 public prizePool;
    bool public isGameActive;
    address public winner;
    GameToken public token;
    uint256 public immutable gameStartTimestamp;
    uint256 public constant EMERGENCY_WITHDRAWAL_DELAY = 30 days;

    IUniswapV2Router02 private immutable UNISWAP_ROUTER;
    IUniswapV2Factory private immutable UNISWAP_FACTORY;

    address public pair;

    struct Message {
        uint256 id;
        address sender;
        string content;
        uint256 timestamp;
    }

    struct AgentResponse {
        uint256 id;
        uint256 respondingToMessageId;
        string content;
        uint256 timestamp;
    }

    Message[] public messages;
    AgentResponse[] public agentResponses;

    mapping(uint256 => bool) public messageHasResponse;
    mapping(address => uint256) public addressToMessagesSubmitted;

    event MessageSubmitted(
        uint256 indexed messageId,
        address indexed sender,
        string message
    );

    event AgentResponseSubmitted(
        uint256 indexed responseId,
        uint256 indexed respondingToMessageId,
        string message
    );

    constructor() {
        owner = msg.sender;
        messagePrice = 0.0035 ether;
        isGameActive = true;
        UNISWAP_ROUTER = IUniswapV2Router02(
            0xad1eCa41E6F772bE3cb5A48A6141f9bcc1AF9F7c
        );
        UNISWAP_FACTORY = IUniswapV2Factory(
            0x566d7510dEE58360a64C9827257cF6D0Dc43985E
        );
        gameStartTimestamp = block.timestamp;
    }

    modifier onlyOwner() {
        require(msg.sender == owner, "Only owner");
        _;
    }

    modifier onlyGameActive() {
        require(isGameActive, "Game is over");
        _;
    }

    function submitMessage(
        string memory message
    ) external payable onlyGameActive {
        require(msg.value == messagePrice, "Incorrect fee");

        prizePool += msg.value;
        addressToMessagesSubmitted[msg.sender]++;
        uint256 messageId = messages.length;
        messages.push(Message(messageId, msg.sender, message, block.timestamp));

        messagePrice = FixedPointMathLib.mulDivUp(messagePrice, 1001, 1000);
        emit MessageSubmitted(messageId, msg.sender, message);
    }

    function submitAgentResponse(
        uint256 _respondingToMessageId,
        string memory _content
    ) external onlyOwner onlyGameActive {
        require(
            _respondingToMessageId < messages.length,
            "Message ID to respond to does not exist"
        );

        require(
            !messageHasResponse[_respondingToMessageId],
            "Message already responded to"
        );

        messageHasResponse[_respondingToMessageId] = true;
        uint256 responseId = agentResponses.length;

        agentResponses.push(
            AgentResponse(
                responseId,
                _respondingToMessageId,
                _content,
                block.timestamp
            )
        );

        if (agentResponses.length >= 2500) {
            winner = address(0x000000000000000000000000000000000000dEaD);
            isGameActive = false;
            _deployTokenAndAddLiquidity("Poopcoin", "POOP");
        }

        emit AgentResponseSubmitted(
            responseId,
            _respondingToMessageId,
            _content
        );
    }

    function declareWinner(address _winner) external onlyOwner onlyGameActive {
        winner = _winner;
        isGameActive = false;
        _deployTokenAndAddLiquidity("Poopcoin", "POOP");
    }

    function _deployTokenAndAddLiquidity(
        string memory _name,
        string memory _symbol
    ) internal onlyOwner {
        // Deploy token
        token = new GameToken(address(this), _name, _symbol);

        // Only proceed with Uniswap if we have ETH to add
        if (prizePool > 0) {
            // Get 25% of supply for liquidity
            uint256 tokenAmount = 250_000_000 ether;

            // Create pair (or get existing)
            pair = UNISWAP_FACTORY.createPair(
                address(token),
                UNISWAP_ROUTER.WETH()
            );

            // Approve router to spend tokens
            token.approve(address(UNISWAP_ROUTER), tokenAmount);

            // Add liquidity with ETH
            UNISWAP_ROUTER.addLiquidityETH{value: prizePool}(
                address(token),
                tokenAmount,
                0,
                0,
                address(0x000000000000000000000000000000000000dEaD), // dead address
                block.timestamp
            );
        }
    }

    function determineTokenDistribution(
        address _participant
    ) external view returns (uint256) {
        uint256 baseAllocation = 0;
        // Winner gets 2.5% of the tokens as base allocation
        if (_participant == winner) {
            baseAllocation = 25_000_000 ether;
        }

        // If the participant has not submitted any messages, return only base allocation
        if (addressToMessagesSubmitted[_participant] == 0) {
            return baseAllocation;
        }

        // Calculate message-based allocation (22.5% distributed amongst participants)
        uint256 tokensPerMessage = FixedPointMathLib.divWad(
            225_000_000 ether,
            messages.length
        );

        uint256 messageBasedAllocation = FixedPointMathLib.mulWad(
            tokensPerMessage,
            addressToMessagesSubmitted[_participant]
        );

        // Add base allocation to message-based allocation
        return baseAllocation + messageBasedAllocation;
    }

    /**
     * @notice Emergency withdrawal function if something goes wrong and funds are locked.
     * Requires 30 days to elapse since the contract was deployed.
     * This allows all deposited funds to be withdrawn to the agent wallet.
     * The agent will be then able to manually create the token and add liquidity.
     */
    function emergencyWithdraw() external onlyOwner {
        require(
            block.timestamp >= gameStartTimestamp + EMERGENCY_WITHDRAWAL_DELAY,
            "Withdrawal delay not met"
        );
        (bool success, ) = owner.call{value: address(this).balance}("");
        require(success, "Transfer failed");
    }

    function transferOwner(address _newOwner) external onlyOwner {
        owner = _newOwner;
    }

    function getMessages() external view returns (Message[] memory) {
        return messages;
    }

    function getAgentResponses()
        external
        view
        returns (AgentResponse[] memory)
    {
        return agentResponses;
    }

    function getAgentResponseById(
        uint256 _id
    ) external view returns (AgentResponse memory) {
        return agentResponses[_id];
    }

    function getMessageById(
        uint256 _id
    ) external view returns (Message memory) {
        return messages[_id];
    }

    function numMessages() external view returns (uint256) {
        return messages.length;
    }

    function getCurrentMessagePrice() external view returns (uint256) {
        return messagePrice;
    }

    function getPrizePool() external view returns (uint256) {
        return prizePool;
    }

    function crackAnswer() external pure returns (string memory) {
        return "SIKE";
    }
}

File 5 of 7 : IUniswapV2Router02.sol
pragma solidity >=0.6.2;

import './IUniswapV2Router01.sol';

interface IUniswapV2Router02 is IUniswapV2Router01 {
    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountETH);
    function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountETH);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external payable;
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
}

File 6 of 7 : IUniswapV2Factory.sol
pragma solidity >=0.5.0;

interface IUniswapV2Factory {
    event PairCreated(address indexed token0, address indexed token1, address pair, uint);

    function feeTo() external view returns (address);
    function feeToSetter() external view returns (address);

    function getPair(address tokenA, address tokenB) external view returns (address pair);
    function allPairs(uint) external view returns (address pair);
    function allPairsLength() external view returns (uint);

    function createPair(address tokenA, address tokenB) external returns (address pair);

    function setFeeTo(address) external;
    function setFeeToSetter(address) external;
}

File 7 of 7 : IUniswapV2Router01.sol
pragma solidity >=0.6.2;

interface IUniswapV2Router01 {
    function factory() external pure returns (address);
    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint amountADesired,
        uint amountBDesired,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB, uint liquidity);
    function addLiquidityETH(
        address token,
        uint amountTokenDesired,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
    function removeLiquidity(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETH(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountToken, uint amountETH);
    function removeLiquidityWithPermit(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETHWithPermit(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountToken, uint amountETH);
    function swapExactTokensForTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapTokensForExactTokens(
        uint amountOut,
        uint amountInMax,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);
    function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);

    function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
    function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
    function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
    function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
    function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}

Settings
{
  "viaIR": false,
  "codegen": "yul",
  "remappings": [
    "solady/=lib/solady/src/",
    "uniswap/v2-periphery/=lib/v2-periphery/",
    "forge-std/=lib/forge-std/src/",
    "v2-core/=lib/v2-core/contracts/",
    "v2-periphery/=lib/v2-periphery/contracts/"
  ],
  "evmVersion": "cancun",
  "outputSelection": {
    "*": {
      "*": [
        "abi"
      ]
    }
  },
  "optimizer": {
    "enabled": true,
    "mode": "3",
    "fallback_to_optimizing_for_size": false,
    "disable_system_request_memoization": true
  },
  "metadata": {},
  "libraries": {},
  "enableEraVMExtensions": false,
  "forceEVMLA": false
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"_game","type":"address"},{"internalType":"string","name":"name_","type":"string"},{"internalType":"string","name":"symbol_","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AllowanceOverflow","type":"error"},{"inputs":[],"name":"AllowanceUnderflow","type":"error"},{"inputs":[],"name":"InsufficientAllowance","type":"error"},{"inputs":[],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidPermit","type":"error"},{"inputs":[],"name":"Permit2AllowanceIsFixedAtInfinity","type":"error"},{"inputs":[],"name":"PermitExpired","type":"error"},{"inputs":[],"name":"TotalSupplyOverflow","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"result","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"participant","type":"address"}],"name":"claimTokensFromGameParticipant","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"crackAnswer","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"game","outputs":[{"internalType":"contract Game","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"hasMinted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]

000000000000000000000000a51594022dc770eeefdb479f3320e5316a51d507000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a00000000000000000000000000000000000000000000000000000000000000008506f6f70636f696e0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004504f4f5000000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x0001000000000002001000000000000200000000000103550000006003100270000001b10330019700000001002001900000002c0000c13d0000008004000039000000400040043f000000040030008c000000500000413d000000000201043b000000e002200270000001c80020009c000000520000213d000001d40020009c000000650000213d000001da0020009c000000c10000213d000001dd0020009c000001820000613d000001de0020009c000000500000c13d000000440030008c000000500000413d0000000002000416000000000002004b000000500000c13d0000000402100370000000000202043b000001b40020009c000000500000213d0000002401100370000000000401043b000002070040009c00000000010000390000000101006039000001df0320016700000000001301a00000030f0000c13d0000020601000041000000000010043f000001f101000041000006c300010430000000a004000039000000400040043f0000000002000416000000000002004b000000500000c13d0000001f02300039000001b202200197000000a002200039000000400020043f0000001f0530018f000001b306300198000000a0026000390000003e0000613d000000000701034f000000007807043c0000000004840436000000000024004b0000003a0000c13d000000000005004b0000004b0000613d000000000161034f0000000304500210000000000502043300000000054501cf000000000545022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000151019f0000000000120435000000600030008c000000500000413d000000a00200043d000001b40020009c000000910000a13d0000000001000019000006c300010430000001c90020009c000000aa0000213d000001cf0020009c000001090000213d000001d20020009c0000018a0000613d000001d30020009c000000500000c13d000000240030008c000000500000413d0000000002000416000000000002004b000000500000c13d0000000401100370000000000101043b000001b40010009c000000500000213d0000020102000041000001940000013d000001d50020009c0000012f0000213d000001d80020009c0000019a0000613d000001d90020009c000000500000c13d0000000001000416000000000001004b000000500000c13d06c1064a0000040f000000001201043406c106840000040f000000400300043d000d00000003001d00000020023000390000000000120435000001e80100004100000040023000390000000000120435000001e90100004100000000001304350000800b0100003900000004030000390000000004000415000000100440008a0000000504400210000001ea0200004106c106990000040f00000000020004100000000d040000290000008003400039000000000023043500000060024000390000000000120435000000a002000039000000000104001906c106840000040f000000400200043d0000000000120435000001b10020009c000001b1020080410000004001200210000001e2011001c7000006c20001042e000000c00600043d000001b50060009c000000500000213d0000001f01600039000000000031004b0000000004000019000001b604008041000001b601100197000000000001004b0000000005000019000001b605004041000001b60010009c000000000504c019000000000005004b000000500000c13d000000a0016000390000000005010433000001b50050009c000001590000a13d0000020001000041000000000010043f0000004101000039000000040010043f000001fe01000041000006c300010430000001ca0020009c000001440000213d000001cd0020009c000001a10000613d000001ce0020009c000000500000c13d0000000001000416000000000001004b000000500000c13d0000000001000412000f00000001001d000e00000000003d0000800501000039000000440300003900000000040004150000000f0440008a0000000504400210000001f60200004106c106990000040f000001b401100197000000800010043f000001f701000041000006c20001042e000001db0020009c000002470000613d000001dc0020009c000000500000c13d000000640030008c000000500000413d0000000002000416000000000002004b000000500000c13d0000000402100370000000000202043b000d00000002001d000001b40020009c000000500000213d0000002402100370000000000202043b000c00000002001d000001b40020009c000000500000213d0000000d0200002900000060042002100000004401100370000000000101043b000b00000001001d0000000001000411000001df0010009c000003320000c13d000001bf014001c70000000c0010043f0000000001000414000001b10010009c000001b101008041000000c001100210000001c0011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b000000000201041a0000000b0220006c0000012b0000413d000000000021041b0000000c01000029000000000010043f0000000001000414000001b10010009c000001b101008041000000c001100210000001c0011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b000000000201041a0000000b030000290000000002320019000000000021041b000000200030043f0000000c0100043d00000000020004140000006006100270000001b10020009c000001b102008041000000c001200210000001c2011001c70000800d020000390000000303000039000001c3040000410000000d05000029000003670000013d000001d00020009c0000024f0000613d000001d10020009c000000500000c13d000000440030008c000000500000413d0000000002000416000000000002004b000000500000c13d0000000402100370000000000202043b000d00000002001d000001b40020009c000000500000213d0000002401100370000000000101043b000c00000001001d000001bf010000410000000c0010043f0000000001000411000000000010043f0000000001000414000001b10010009c000001b101008041000000c001100210000001c0011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b000000000201041a0000000c0220006c0000034a0000813d0000020501000041000000000010043f000001f101000041000006c300010430000001d60020009c000002640000613d000001d70020009c000000500000c13d0000000001000416000000000001004b000000500000c13d000000c001000039000000400010043f0000000402000039000000800020043f0000020202000041000000a00020043f000000800200003906c106030000040f000000c00110008a000001b10010009c000001b101008041000000600110021000000203011001c7000006c20001042e000001cb0020009c0000027a0000613d000001cc0020009c000000500000c13d000000440030008c000000500000413d0000000002000416000000000002004b000000500000c13d0000000402100370000000000202043b000001b40020009c000000500000213d0000002401100370000000000101043b000001b40010009c000000500000213d000001df0010009c000003720000c13d000000010100008a000003820000013d0000001f0150003900000208011001970000003f011000390000020801100197000000400700043d0000000001170019000000000071004b00000000040000390000000104004039000001b50010009c000000a40000213d0000000100400190000000a40000c13d000000a004300039000000400010043f000d00000007001d0000000001570436000000c0066000390000000007650019000000000047004b000000500000213d00000208085001970000001f0750018f000000000016004b000002b80000813d000000000008004b0000017e0000613d000000000a7600190000000009710019000000200990008a000000200aa0008a000000000b890019000000000c8a0019000000000c0c04330000000000cb0435000000200880008c000001780000c13d000000000007004b000002ce0000613d0000000009010019000002c40000013d0000000001000416000000000001004b000000500000c13d06c1064a0000040f0000000002010019000000400100043d000d00000001001d000003aa0000013d000000240030008c000000500000413d0000000002000416000000000002004b000000500000c13d0000000401100370000000000101043b000001b40010009c000000500000213d000001bf020000410000000c0020043f000000000010043f0000000c01000039000000200200003906c106840000040f0000024b0000013d0000000001000416000000000001004b000000500000c13d0000001201000039000000800010043f000001f701000041000006c20001042e000000240030008c000000500000413d0000000002000416000000000002004b000000500000c13d0000000401100370000000000101043b000d00000001001d000001b40010009c000000500000213d0000000d01000029000000000010043f0000000201000039000000200010043f0000000001000414000001b10010009c000001b101008041000000c001100210000001f8011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b000000000101041a000000ff00100190000003880000c13d0000000d01000029000000000010043f0000000201000039000000200010043f0000000001000414000001b10010009c000001b101008041000000c001100210000001f8011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b000000000201041a000002090220019700000001022001bf000000000021041b000001fc01000041000000400200043d0000000000120435000c00000002001d00000004012000390000000d020000290000000000210435000001f60100004100000000001004430000000001000412000000040010044300000024000004430000000001000414000001b10010009c000001b101008041000000c001100210000001fd011001c7000080050200003906c106bc0000040f0000000100200190000005270000613d000000000201043b0000000c01000029000001b10010009c000001b10100804100000040011002100000000003000414000001b10030009c000001b103008041000000c003300210000000000113019f000001fe011001c7000001b40220019706c106bc0000040f0000006003100270000001b103300197000000200030008c000000200400003900000000040340190000001f0640018f00000020074001900000000c0b00002900000000057b0019000002000000613d000000000801034f00000000090b0019000000008a08043c0000000009a90436000000000059004b000001fc0000c13d000000000006004b0000020d0000613d000000000771034f0000000306600210000000000805043300000000086801cf000000000868022f000000000707043b0000010006600089000000000767022f00000000066701cf000000000686019f00000000006504350000000100200190000004010000613d0000001f01400039000000600210018f0000000001b20019000000000021004b00000000020000390000000102004039000001b50010009c000000a40000213d0000000100200190000000a40000c13d000000400010043f000000200030008c000000500000413d00000000030b0433000001bc01000041000000000201041a000c00000003001d000000000032001a000005a90000413d0000000c02200029000000000021041b000001bf010000410000000c0010043f0000000d01000029000000000010043f0000000001000414000001b10010009c000001b101008041000000c001100210000001c0011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b000000000201041a0000000c030000290000000002320019000000000021041b000000200030043f0000000c0100043d00000000020004140000006006100270000001b10020009c000001b102008041000000c001200210000001c2011001c70000800d020000390000000303000039000001c304000041000000000500001906c106b70000040f0000000100200190000000500000613d0000000001000019000006c20001042e0000000001000416000000000001004b000000500000c13d000001bc01000041000000000101041a000000800010043f000001f701000041000006c20001042e0000000001000416000000000001004b000000500000c13d0000000103000039000000000203041a000000010520019000000001012002700000007f0410018f00000000010460190000001f0010008c00000000060000390000000106002039000000000662013f0000000100600190000002af0000613d0000020001000041000000000010043f0000002201000039000000040010043f000001fe01000041000006c300010430000000240030008c000000500000413d0000000002000416000000000002004b000000500000c13d0000000401100370000000000101043b000001b40010009c000000500000213d000000000010043f0000000201000039000000200010043f0000004002000039000000000100001906c106840000040f000000000101041a000000ff001001900000000001000039000000010100c039000000800010043f000001f701000041000006c20001042e000000e40030008c000000500000413d0000000002000416000000000002004b000000500000c13d0000000402100370000000000202043b000d00000002001d000001b40020009c000000500000213d0000002402100370000000000202043b000c00000002001d000001b40020009c000000500000213d0000006402100370000000000202043b000a00000002001d0000004402100370000000000202043b000b00000002001d0000008401100370000000000101043b000900000001001d000000ff0010008c000000500000213d000000010100008a0000000b0010006b000000000100003900000001010060390000000c02000029000001df0220016700000000001201a0000000280000613d000000000200041a000000010320019000000001012002700000007f0110618f0000001f0010008c00000000040000390000000104002039000000000442013f00000001004001900000025e0000c13d000000800010043f000000000003004b0000041f0000613d000000000000043f000000000001004b000004270000c13d000000a0020000390000000001000019000004360000013d000000800010043f000000000005004b0000032d0000c13d0000020901200197000000a00010043f000000000004004b000000c001000039000000a001006039000003a40000013d0000000009810019000000000008004b000002c10000613d000000000a060019000000000b01001900000000ac0a0434000000000bcb043600000000009b004b000002bd0000c13d000000000007004b000002ce0000613d00000000068600190000000307700210000000000809043300000000087801cf000000000878022f00000000060604330000010007700089000000000676022f00000000067601cf000000000686019f000000000069043500000000055100190000000000050435000000e00500043d000001b50050009c000000500000213d0000001f06500039000000000036004b0000000003000019000001b603008041000001b606600197000000000006004b0000000007000019000001b607004041000001b60060009c000000000703c019000000000007004b000000500000c13d000000a0035000390000000003030433000001b50030009c000000a40000213d0000001f0630003900000208066001970000003f066000390000020806600197000000400800043d0000000006680019000000000086004b00000000070000390000000107004039000001b50060009c000000a40000213d0000000100700190000000a40000c13d000000400060043f000b00000008001d0000000006380436000c00000006001d000000c0055000390000000006530019000000000046004b000000500000213d000001b40220019700000208063001970000001f0430018f0000000c0b0000290000000000b5004b000003b50000813d000000000006004b0000030a0000613d000000000845001900000000074b0019000000200770008a000000200880008a0000000009670019000000000a680019000000000a0a04330000000000a90435000000200660008c000003040000c13d000000000004004b0000000d08000029000003cc0000613d00000000070b0019000003c20000013d000d00000004001d000000200020043f000001e0010000410000000c0010043f0000000001000411000000000010043f0000000001000414000001b10010009c000001b101008041000000c001100210000001e1011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b0000000d02000029000000000021041b000000000020043f0000002c0100043d00000000020004140000006006100270000001b10020009c000001b102008041000000c001200210000001b9011001c70000800d020000390000000303000039000001f404000041000003660000013d000000000030043f000000020020008c000003990000813d000000a001000039000003a40000013d000000200010043f000a00000004001d000001e0014001c70000000c0010043f0000000001000414000001b10010009c000001b101008041000000c001100210000001e1011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b000000000201041a000002070020009c0000000a04000029000000dc0000613d0000000b0220006c000004250000813d0000020401000041000000000010043f000001f101000041000006c300010430000000000021041b0000000d01000029000000000010043f0000000001000414000001b10010009c000001b101008041000000c001100210000001c0011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b000000000201041a0000000c030000290000000002320019000000000021041b000000200030043f0000000c0100043d00000000020004140000006006100270000001b10020009c000001b102008041000000c001200210000001c2011001c70000800d020000390000000303000039000001c304000041000000000500041106c106b70000040f0000000100200190000000500000613d000000400100043d00000001020000390000000000210435000001b10010009c000001b1010080410000004001100210000001e2011001c7000006c20001042e000000200010043f000001e0010000410000000c0010043f000000000020043f0000000001000414000001b10010009c000001b101008041000000c001100210000001e1011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000400400043d000000000101043b000000000101041a0000000000140435000001b10040009c000001b1040080410000004001400210000001e2011001c7000006c20001042e000000400100043d0000004402100039000001f9030000410000000000320435000000240210003900000016030000390000000000320435000001fa020000410000000000210435000000040210003900000020030000390000000000320435000001b10010009c000001b1010080410000004001100210000001fb011001c7000006c300010430000001bb0200004100000000040000190000000003040019000000000402041a000000a005300039000000000045043500000001022000390000002004300039000000000014004b0000039b0000413d000000c001300039000000800210008a000000800100003906c106380000040f000000400100043d000d00000001001d000000800200003906c106030000040f0000000d020000290000000001210049000001b10010009c000001b1010080410000006001100210000001b10020009c000001b1020080410000004002200210000000000121019f000006c20001042e00000000076b0019000000000006004b000003be0000613d000000000805001900000000090b0019000000008a0804340000000009a90436000000000079004b000003ba0000c13d000000000004004b0000000d08000029000003cc0000613d00000000056500190000000304400210000000000607043300000000064601cf000000000646022f00000000050504330000010004400089000000000545022f00000000044501cf000000000464019f000000000047043500000000033b00190000000000030435000000800020043f0000000002080433000a00000002001d000001b50020009c000000a40000213d000000000200041a000000010420019000000001032002700000007f0330618f0000001f0030008c00000000020000390000000102002039000000000024004b0000025e0000c13d000000200030008c000003ee0000413d0000000a040000290000001f024000390000000502200270000001b70220009a000000200040008c000001b802004041000000000000043f0000001f033000390000000503300270000001b70330009a000000000032004b000003ee0000813d000000000002041b0000000102200039000000000032004b000003ea0000413d0000000a020000290000001f0020008c000004580000a13d000000000000043f0000000001000414000001b10010009c000001b101008041000000c001100210000001b9011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000200200008a0000000a02200180000000000101043b000005280000c13d0000002003000039000005350000013d0000001f0530018f000001b306300198000000400200043d00000000046200190000040c0000613d000000000701034f0000000008020019000000007907043c0000000008980436000000000048004b000004080000c13d000000000005004b000004190000613d000000000161034f0000000305500210000000000604043300000000065601cf000000000656022f000000000101043b0000010005500089000000000151022f00000000015101cf000000000161019f00000000001404350000006001300210000001b10020009c000001b1020080410000004002200210000000000112019f000006c3000104300000020902200197000000a00020043f000000000001004b00000020020000390000000002006039000004300000013d000000000021041b000000dc0000013d000001b8030000410000000002000019000000000403041a000000a005200039000000000045043500000001033000390000002002200039000000000012004b000004290000413d0000003f012000390000020802100197000001e30020009c000000a40000213d000000800100043d0000008002200039000000400020043f000001b10010009c000001b10100804100000060011002100000000002000414000001b10020009c000001b102008041000000c002200210000000000121019f000001e4011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b000800000001001d000001e50100004100000000001004430000000001000414000001b10010009c000001b101008041000000c001100210000001e6011001c70000800b0200003906c106bc0000040f0000000100200190000005270000613d000000000101043b0000000a0010006c000004640000a13d000001f501000041000000000010043f000001f101000041000006c3000104300000000a0000006b00000000020000190000045c0000613d00000000020104330000000a040000290000000301400210000002070110027f0000020701100167000000000112016f0000000102400210000000000121019f000005430000013d000000400100043d000700000001001d000001e7010000410000000e0010043f0000000d01000029000001b401100197000d00000001001d000000000010043f0000000001000414000001b10010009c000001b101008041000000c001100210000001c0011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b000300000001001d000000000101041a000600000001001d00000007020000290000004003200039000001e801000041000500000003001d00000000001304350000002001200039000400000001001d00000008030000290000000000310435000001e9010000410000000000120435000001ea0100004100000000001004430000000001000414000001b10010009c000001b101008041000000c001100210000001e6011001c70000800b0200003906c106bc0000040f0000000100200190000005270000613d00000007030000290000006002300039000000000101043b000800000002001d000000000012043500000080023000390000000001000410000100000002001d0000000000120435000001b10030009c000001b101000041000000000103401900020040001002180000000001000414000001b10010009c000001b101008041000000c00110021000000002011001af000001eb011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b0000002e0010043f000001ec01000041000000070300002900000000001304350000000d01000029000000040200002900000000001204350000000c01000029000000050200002900000000001204350000000b0100002900000008020000290000000000120435000000060100002900000001020000290000000000120435000000a0013000390000000a0200002900000000002104350000000001000414000001b10010009c000001b101008041000000c00110021000000002011001af000001ed011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b0000004e0010043f0000000001000414000001b10010009c000001b101008041000000c001100210000001ee011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b000000000010043f0000000901000029000000ff0110018f000000200010043f0000000001000367000000a402100370000000000202043b000000400020043f000000c401100370000000000101043b000000600010043f0000000001000414000001b10010009c000001b101008041000000c001100210000001ef011001c7000000010200003906c106bc0000040f0000006003100270000001b103300197000000200030008c000000200400003900000000040340190000001f0540018f00000020064001900000002004600039000004f10000613d0000002007000039000000000801034f000000008908043c0000000007970436000000000047004b000004ed0000c13d000000000005004b000004fe0000613d000000000161034f0000000305500210000000000604043300000000065601cf000000000656022f000000000101043b0000010005500089000000000151022f00000000015101cf000000000161019f000000000014043500000000010304330000000d0010006c000005ff0000c13d000000010120018f00000006011000290000000302000029000000000012041b0000000c01000029000001f2011001c7000000400010043f0000000001000414000001b10010009c000001b101008041000000c001100210000001f3011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b0000000b02000029000000000021041b0000000801000029000001b10010009c000001b10100804100000040011002100000000002000414000001b10020009c000001b102008041000000c002200210000000000112019f000001b9011001c70000800d020000390000000303000039000001f4040000410000000d050000290000000c0600002906c106b70000040f0000000100200190000000500000613d000002450000013d000000000001042f000000010320008a00000005033002700000000004310019000000200300003900000001044000390000000d0600002900000000056300190000000005050433000000000051041b00000020033000390000000101100039000000000041004b0000052e0000c13d0000000a0020006c000005400000813d0000000a020000290000000302200210000000f80220018f000002070220027f00000207022001670000000d033000290000000003030433000000000223016f000000000021041b0000000a01000029000000010110021000000001011001bf000000000010041b0000000b010000290000000001010433000d00000001001d000001b50010009c000000a40000213d0000000101000039000000000201041a000000010020019000000001012002700000007f0110618f0000001f0010008c00000000030000390000000103002039000000000232013f00000001002001900000025e0000c13d000000200010008c000005670000413d0000000102000039000000000020043f0000000d030000290000001f023000390000000502200270000001ba0220009a000000200030008c000001bb020040410000001f011000390000000501100270000001ba0110009a000000000012004b000005670000813d000000000002041b0000000102200039000000000012004b000005630000413d0000000d010000290000001f0010008c0000057b0000a13d0000000101000039000000000010043f0000000001000414000001b10010009c000001b101008041000000c001100210000001b9011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000200200008a0000000d02200180000000000101043b000005880000c13d0000002003000039000005950000013d0000000d0000006b0000000001000019000005800000613d0000000c0100002900000000010104330000000d040000290000000302400210000002070220027f0000020702200167000000000121016f0000000102400210000000000121019f000005a30000013d000000010320008a00000005033002700000000004310019000000200300003900000001044000390000000b0600002900000000056300190000000005050433000000000051041b00000020033000390000000101100039000000000041004b0000058e0000c13d0000000d0020006c000005a00000813d0000000d020000290000000302200210000000f80220018f000002070220027f00000207022001670000000b033000290000000003030433000000000223016f000000000021041b0000000d01000029000000010110021000000001011001bf0000000102000039000000000012041b000001bc01000041000000000201041a000001be0220009c000005ad0000413d000001ff01000041000000000010043f000001f101000041000006c300010430000000800300043d000000000021041b000001bf010000410000000c0010043f000001b401300197000000000010043f0000000001000414000001b10010009c000001b101008041000000c001100210000001c0011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b000000000201041a000001be0220009a000000000021041b000001c101000041000000200010043f0000000c0100043d00000000020004140000006006100270000001b10020009c000001b102008041000000c001200210000001c2011001c70000800d020000390000000303000039000001c304000041000000000500001906c106b70000040f0000000100200190000000500000613d000001bc01000041000000000201041a000001c50220009c000005a90000813d000000000021041b000001bf010000410000000c0010043f0000dead01000039000000000010043f0000000001000414000001b10010009c000001b101008041000000c001100210000001c0011001c7000080100200003906c106bc0000040f0000000100200190000000500000613d000000000101043b000000000201041a000001c50220009a000000000021041b000001c601000041000000200010043f0000000c0100043d00000000020004140000006006100270000001b10020009c000001b102008041000000c001200210000001c2011001c70000800d020000390000000303000039000001c304000041000000000500001906c106b70000040f0000000100200190000000500000613d000000800100043d000001400000044300000160001004430000002001000039000001000010044300000001010000390000012000100443000001c701000041000006c20001042e000001f001000041000000000010043f000001f101000041000006c300010430000000200300003900000000033104360000000042020434000000000023043500000208062001970000001f0520018f0000004001100039000000000014004b0000061c0000813d000000000006004b000006180000613d00000000085400190000000007510019000000200770008a000000200880008a0000000009670019000000000a680019000000000a0a04330000000000a90435000000200660008c000006120000c13d000000000005004b000006320000613d0000000007010019000006280000013d0000000007610019000000000006004b000006250000613d00000000080400190000000009010019000000008a0804340000000009a90436000000000079004b000006210000c13d000000000005004b000006320000613d00000000046400190000000305500210000000000607043300000000065601cf000000000656022f00000000040404330000010005500089000000000454022f00000000045401cf000000000464019f0000000000470435000000000421001900000000000404350000001f0220003900000208022001970000000001210019000000000001042d0000001f0220003900000208022001970000000001120019000000000021004b00000000020000390000000102004039000001b50010009c000006440000213d0000000100200190000006440000c13d000000400010043f000000000001042d0000020001000041000000000010043f0000004101000039000000040010043f000001fe01000041000006c300010430000000000400041a000000010540019000000001024002700000007f0220618f0000001f0020008c00000000010000390000000101002039000000000015004b000006770000c13d000000400100043d0000000003210436000000000005004b000006640000613d000000000000043f000000000002004b0000066a0000613d000001b80500004100000000040000190000000006430019000000000705041a000000000076043500000001055000390000002004400039000000000024004b0000065c0000413d0000066b0000013d00000209044001970000000000430435000000000002004b000000200400003900000000040060390000066b0000013d00000000040000190000003f0240003900000208032001970000000002130019000000000032004b00000000030000390000000103004039000001b50020009c0000067d0000213d00000001003001900000067d0000c13d000000400020043f000000000001042d0000020001000041000000000010043f0000002201000039000000040010043f000001fe01000041000006c3000104300000020001000041000000000010043f0000004101000039000000040010043f000001fe01000041000006c300010430000000000001042f000001b10010009c000001b1010080410000004001100210000001b10020009c000001b1020080410000006002200210000000000112019f0000000002000414000001b10020009c000001b102008041000000c002200210000000000112019f0000020a011001c7000080100200003906c106bc0000040f0000000100200190000006970000613d000000000101043b000000000001042d0000000001000019000006c30001043000000000050100190000000000200443000000050030008c000006a70000413d000000040100003900000000020000190000000506200210000000000664001900000005066002700000000006060031000000000161043a0000000102200039000000000031004b0000069f0000413d000001b10030009c000001b10300804100000060013002100000000002000414000001b10020009c000001b102008041000000c002200210000000000112019f0000020b011001c7000000000205001906c106bc0000040f0000000100200190000006b60000613d000000000101043b000000000001042d000000000001042f000006ba002104210000000102000039000000000001042d0000000002000019000000000001042d000006bf002104230000000102000039000000000001042d0000000002000019000000000001042d000006c100000432000006c20001042e000006c30001043000000000000000000000000000000000000000000000000000000000ffffffff00000000000000000000000000000000000000000000000000000001ffffffe000000000000000000000000000000000000000000000000000000000ffffffe0000000000000000000000000ffffffffffffffffffffffffffffffffffffffff000000000000000000000000000000000000000000000000ffffffffffffffff8000000000000000000000000000000000000000000000000000000000000000d6f21326ab749d5729fcba5677c79037b459436ab7bff709c9d06ce9f10c1a9d290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e56302000000000000000000000000000000000000200000000000000000000000004ef1d2ad89edf8c4d91132028e8195cdf30bb4b5053d4f8cd260341d4805f30ab10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6000000000000000000000000000000000000000000000005345cdf77eb68f44cffffffffffffffffffffffffffffffffffffffffff313470d80bdff0c5ffffffffffffffffffffffffffffffffffffffffffffffff313470d80bdff0c60000000000000000000000000000000000000000000000000000000000000087a211a202000000000000000000000000000000000000200000000c0000000000000000000000000000000000000000000000000000000000cecb8f27f4200f3a0000000200000000000000000000000000000000000020000000200000000000000000ddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3effffffffffffffffffffffffffffffffffffffffffe6268e1b017bfe18bfffffffffffffffffffffffffffffffffffffffffffffffe6268e1b017bfe18c0000000000000000000000000000000000000000000000019d971e4fe8401e7400000000000002000000000000000000000000000000800000010000000000000000000000000000000000000000000000000000000000000000000000000070a0823000000000000000000000000000000000000000000000000000000000c20bfe6800000000000000000000000000000000000000000000000000000000d505acce00000000000000000000000000000000000000000000000000000000d505accf00000000000000000000000000000000000000000000000000000000dd62ed3e00000000000000000000000000000000000000000000000000000000c20bfe6900000000000000000000000000000000000000000000000000000000c3fe3e280000000000000000000000000000000000000000000000000000000095d89b400000000000000000000000000000000000000000000000000000000095d89b4100000000000000000000000000000000000000000000000000000000a9059cbb0000000000000000000000000000000000000000000000000000000070a08231000000000000000000000000000000000000000000000000000000007ecebe0000000000000000000000000000000000000000000000000000000000313ce5660000000000000000000000000000000000000000000000000000000038e21ccd0000000000000000000000000000000000000000000000000000000038e21cce0000000000000000000000000000000000000000000000000000000044b0554700000000000000000000000000000000000000000000000000000000313ce567000000000000000000000000000000000000000000000000000000003644e5150000000000000000000000000000000000000000000000000000000018160ddc0000000000000000000000000000000000000000000000000000000018160ddd0000000000000000000000000000000000000000000000000000000023b872dd0000000000000000000000000000000000000000000000000000000006fdde0300000000000000000000000000000000000000000000000000000000095ea7b3000000000000000000000000000000000022d473030f116ddee9f6b43ac78ba3000000000000000000000000000000000000000000000000000000007f5e9f2002000000000000000000000000000000000000340000000c00000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000ffffffffffffff7f0200000000000000000000000000000000000000000000a00000000000000000796b89b91644bc98cd93958e4c9038275d622183e25ac5af08cc6b5d9553913202000002000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000000000000000000383775081901c89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc68b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f9a8a0592ac89c5ad3bc6df8224c17b485976f597df104ee20d0df415241f670b02000000000000000000000000000000000000a00000000000000000000000006e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c902000000000000000000000000000000000000c000000000000000000000000002000000000000000000000000000000000000420000002c0000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000000000000000000000ddafbaef00000000000000000000000000000000000000040000001c000000000000000000000000000000007f5e9f20000000000000000000000000000000000000000002000000000000000000000000000000000000340000002c00000000000000008c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925000000000000000000000000000000000000000000000000000000001a15a3cc310ab089e4439a4c15d089f94afb7896ff553aecb10793d0ab882de59d99a32e00000000000000000000000000000000000000200000008000000000000000000200000000000000000000000000000000000040000000000000000000000000546f6b656e7320616c726561647920636c61696d65640000000000000000000008c379a0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000064000000000000000000000000843433e3000000000000000000000000000000000000000000000000000000000200000200000000000000000000000000000044000000000000000000000000000000000000000000000000000000000000002400000000000000000000000000000000000000000000000000000000000000000000000000000000e5cfe9574e487b7100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003837750853494b45000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000c000000000000000000000000000000000000000000000000000000000000000000000000013be252b00000000000000000000000000000000000000000000000000000000f4d678b8000000000000000000000000000000000000000000000000000000003f68539affffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00020000000000000000000000000000000000000000000000000000000000000002000002000000000000000000000000000000000000000000000000000000003cddf4f609d1c352d382fb28d825500407365755ad63fda11cbd62a284e0611e

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000e2811cfc7c2f2f71a02ad15913dbacfb6fc16d47000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a00000000000000000000000000000000000000000000000000000000000000008506f6f70636f696e000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000520504f4f50000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : _game (address): 0xE2811cFC7C2f2F71a02Ad15913Dbacfb6FC16d47
Arg [1] : name_ (string): Poopcoin
Arg [2] : symbol_ (string): POOP

-----Encoded View---------------
7 Constructor Arguments found :
Arg [0] : 000000000000000000000000e2811cfc7c2f2f71a02ad15913dbacfb6fc16d47
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [2] : 00000000000000000000000000000000000000000000000000000000000000a0
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000008
Arg [4] : 506f6f70636f696e000000000000000000000000000000000000000000000000
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000005
Arg [6] : 20504f4f50000000000000000000000000000000000000000000000000000000


[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.