ETH Price: $3,264.08 (+4.20%)

Contract Diff Checker

Contract Name:
TetherTokenV2

Contract Source Code:

// SPDX-License-Identifier: Apache 2.0
import "./TetherToken.sol";
import "./EIP3009.sol";
import "./util/SignatureChecker.sol";
pragma solidity 0.8.4;

contract TetherTokenV2 is TetherToken, EIP3009 {
    bytes32 internal constant _PERMIT_TYPEHASH =
        keccak256(
            "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
        );

    constructor () initializer {}

    function domainSeparator()
        internal
        view
        virtual
        override
        returns (bytes32)
    {
        return _domainSeparatorV4();
    }

    /**
     * The following applies to the following function and comments to that function:
     * 
     * SPDX-License-Identifier: Apache-2.0
     *
     * Copyright (c) 2023, Circle Internet Financial, LLC.
     *
     * Licensed under the Apache License, Version 2.0 (the "License");
     * you may not use this file except in compliance with the License.
     * You may obtain a copy of the License at
     *
     * http://www.apache.org/licenses/LICENSE-2.0
     * 
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     * 
     * ---------------------------------------------------------------------
     * 
     * Adapted by Tether.to 2024 for greater flexibility and reusability
     */
    function _permit(
        address owner_,
        address spender,
        uint256 value,
        uint256 deadline,
        bytes memory signature
    ) internal {
        require(block.timestamp <= deadline, "ERC20Permit: expired deadline");

        bytes32 structHash = keccak256(
            abi.encode(
                _PERMIT_TYPEHASH,
                owner_,
                spender,
                value,
                _useNonce(owner_),
                deadline
            )
        );

        bytes32 hash = _hashTypedDataV4(structHash);

        require(
            SignatureChecker.isValidSignatureNow(owner_, hash, signature),
            "EIP2612: invalid signature"
        );

        _approve(owner_, spender, value);
    }

    /**
     * @notice Update allowance with a signed permit
     * @param owner_       Token owner's address
     * @param spender     Spender's address
     * @param value       Amount of allowance
     * @param deadline    The time at which the signature expires (unix time)
     * @param v   signature component v
     * @param r   signature component r
     * @param s   signature component s
     */
    function permit(
        address owner_,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        _permit(owner_, spender, value, deadline, abi.encodePacked(r, s, v));
    }

    /**
     * The following applies to the following function and comments to that function:
     * 
     * SPDX-License-Identifier: Apache-2.0
     *
     * Copyright (c) 2023, Circle Internet Financial, LLC.
     *
     * Licensed under the Apache License, Version 2.0 (the "License");
     * you may not use this file except in compliance with the License.
     * You may obtain a copy of the License at
     *
     * http://www.apache.org/licenses/LICENSE-2.0
     * 
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     * 
     * ---------------------------------------------------------------------
     * 
     * Adapted by Tether.to 2024 for greater flexibility and reusability
     */

    /**
     * @notice Update allowance with a signed permit
     * @dev EOA wallet signatures should be packed in the order of r, s, v.
     * @param owner_       Token owner's address (Authorizer)
     * @param spender     Spender's address
     * @param value       Amount of allowance
     * @param deadline    The time at which the signature expires (unix time), or max uint256 value to signal no expiration
     * @param signature   Signature bytes signed by an EOA wallet or a contract wallet
     */
    function permit(
        address owner_,
        address spender,
        uint256 value,
        uint256 deadline,
        bytes memory signature
    ) external {
        _permit(owner_, spender, value, deadline, signature);
    }

    /**
     * The following applies to the following function and comments to that function:
     * 
     * SPDX-License-Identifier: Apache-2.0
     *
     * Copyright (c) 2023, Circle Internet Financial, LLC.
     *
     * Licensed under the Apache License, Version 2.0 (the "License");
     * you may not use this file except in compliance with the License.
     * You may obtain a copy of the License at
     *
     * http://www.apache.org/licenses/LICENSE-2.0
     * 
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     * 
     * ---------------------------------------------------------------------
     * 
     * Adapted by Tether.to 2024 for greater flexibility and reusability
     */

    /**
     * @notice Execute a transfer with a signed authorization
     * @param from          Payer's address (Authorizer)
     * @param to            Payee's address
     * @param value         Amount to be transferred
     * @param validAfter    The time after which this is valid (unix time)
     * @param validBefore   The time before which this is valid (unix time)
     * @param nonce         Unique nonce
     * @param v             v of the signature
     * @param r             r of the signature
     * @param s             s of the signature
     */
    function transferWithAuthorization(
        address from,
        address to,
        uint256 value,
        uint256 validAfter,
        uint256 validBefore,
        bytes32 nonce,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public onlyNotBlocked {
        _transferWithAuthorizationValidityCheck(
            from,
            to,
            value,
            validAfter,
            validBefore,
            nonce,
            abi.encodePacked(r, s, v)
        );
        _transfer(from, to, value);
    }

    /**
     * The following applies to the following function and comments to that function:
     * 
     * SPDX-License-Identifier: Apache-2.0
     *
     * Copyright (c) 2023, Circle Internet Financial, LLC.
     *
     * Licensed under the Apache License, Version 2.0 (the "License");
     * you may not use this file except in compliance with the License.
     * You may obtain a copy of the License at
     *
     * http://www.apache.org/licenses/LICENSE-2.0
     * 
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     * 
     * ---------------------------------------------------------------------
     * 
     * Adapted by Tether.to 2024 for greater flexibility and reusability
     */

    /**
     * @notice Execute a transfer with a signed authorization
     * @dev EOA wallet signatures should be packed in the order of r, s, v.
     * @param from          Payer's address (Authorizer)
     * @param to            Payee's address
     * @param value         Amount to be transferred
     * @param validAfter    The time after which this is valid (unix time)
     * @param validBefore   The time before which this is valid (unix time)
     * @param nonce         Unique nonce
     * @param signature     Signature bytes signed by an EOA wallet or a contract wallet
     */
    function transferWithAuthorization(
        address from,
        address to,
        uint256 value,
        uint256 validAfter,
        uint256 validBefore,
        bytes32 nonce,
        bytes memory signature
    ) external onlyNotBlocked {
        _transferWithAuthorizationValidityCheck(
            from,
            to,
            value,
            validAfter,
            validBefore,
            nonce,
            signature
        );
        _transfer(from, to, value);
    }

    /**
     * The following applies to the following function and comments to that function:
     * 
     * SPDX-License-Identifier: Apache-2.0
     *
     * Copyright (c) 2023, Circle Internet Financial, LLC.
     *
     * Licensed under the Apache License, Version 2.0 (the "License");
     * you may not use this file except in compliance with the License.
     * You may obtain a copy of the License at
     *
     * http://www.apache.org/licenses/LICENSE-2.0
     * 
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     * 
     * ---------------------------------------------------------------------
     * 
     * Adapted by Tether.to 2024 for greater flexibility and reusability
     */

    /**
     * @notice Receive a transfer with a signed authorization from the payer
     * @dev This has an additional check to ensure that the payee's address
     * matches the caller of this function to prevent front-running attacks.
     * @param from          Payer's address (Authorizer)
     * @param to            Payee's address
     * @param value         Amount to be transferred
     * @param validAfter    The time after which this is valid (unix time)
     * @param validBefore   The time before which this is valid (unix time)
     * @param nonce         Unique nonce
     * @param v             v of the signature
     * @param r             r of the signature
     * @param s             s of the signature
     */
    function receiveWithAuthorization(
        address from,
        address to,
        uint256 value,
        uint256 validAfter,
        uint256 validBefore,
        bytes32 nonce,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public onlyNotBlocked {
        _receiveWithAuthorizationValidityCheck(
            from,
            to,
            value,
            validAfter,
            validBefore,
            nonce,
            abi.encodePacked(r, s, v)
        );
        _transfer(from, to, value);
    }

    /**
     * The following applies to the following function and comments to that function:
     * 
     * SPDX-License-Identifier: Apache-2.0
     *
     * Copyright (c) 2023, Circle Internet Financial, LLC.
     *
     * Licensed under the Apache License, Version 2.0 (the "License");
     * you may not use this file except in compliance with the License.
     * You may obtain a copy of the License at
     *
     * http://www.apache.org/licenses/LICENSE-2.0
     * 
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     * 
     * ---------------------------------------------------------------------
     * 
     * Adapted by Tether.to 2024 for greater flexibility and reusability
     */

    /**
     * @notice Receive a transfer with a signed authorization from the payer
     * @dev This has an additional check to ensure that the payee's address
     * matches the caller of this function to prevent front-running attacks.
     * EOA wallet signatures should be packed in the order of r, s, v.
     * @param from          Payer's address (Authorizer)
     * @param to            Payee's address
     * @param value         Amount to be transferred
     * @param validAfter    The time after which this is valid (unix time)
     * @param validBefore   The time before which this is valid (unix time)
     * @param nonce         Unique nonce
     * @param signature     Signature bytes signed by an EOA wallet or a contract wallet
     */
    function receiveWithAuthorization(
        address from,
        address to,
        uint256 value,
        uint256 validAfter,
        uint256 validBefore,
        bytes32 nonce,
        bytes memory signature
    ) external onlyNotBlocked {
        _receiveWithAuthorizationValidityCheck(
            from,
            to,
            value,
            validAfter,
            validBefore,
            nonce,
            signature
        );
        _transfer(from, to, value);
    }

    uint256[48] private __gap;
}

/**
 * SPDX-License-Identifier: Apache-2.0
 *
 * Copyright (c) 2023, Circle Internet Financial, LLC.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * 
 * ---------------------------------------------------------------------
 * 
 * Adapted by Tether.to 2024 for greater flexibility and reusability
 */

pragma solidity >=0.6.12 <0.9.0;

import { SignatureChecker } from "./util/SignatureChecker.sol";
import { MessageHashUtils } from "./util/MessageHashUtils.sol";

/**
 * @title EIP-3009
 * @notice Provide internal implementation for gas-abstracted transfers
 * @dev Contracts that inherit from this must wrap these with publicly
 * accessible functions, optionally adding modifiers where necessary
 */
abstract contract EIP3009 {
    bytes32 public constant TRANSFER_WITH_AUTHORIZATION_TYPEHASH = keccak256("TransferWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)");

    bytes32 public constant RECEIVE_WITH_AUTHORIZATION_TYPEHASH = keccak256("ReceiveWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)");

    bytes32 public constant CANCEL_AUTHORIZATION_TYPEHASH = keccak256("CancelAuthorization(address authorizer,bytes32 nonce)");

    /**
     * @dev authorizer address => nonce => bool (true if nonce is used)
     */
    mapping(address => mapping(bytes32 => bool)) private _authorizationStates;

    event AuthorizationUsed(address indexed authorizer, bytes32 indexed nonce);
    event AuthorizationCanceled(
        address indexed authorizer,
        bytes32 indexed nonce
    );

    function domainSeparator() internal virtual view returns (bytes32);

    /**
     * @notice Returns the state of an authorization
     * @dev Nonces are randomly generated 32-byte data unique to the
     * authorizer's address
     * @param authorizer    Authorizer's address
     * @param nonce         Nonce of the authorization
     * @return True if the nonce is used
     */
    function authorizationState(address authorizer, bytes32 nonce)
        external
        view
        returns (bool)
    {
        return _authorizationStates[authorizer][nonce];
    }

    /**
     * @notice Execute a transfer with a signed authorization
     * @param from          Payer's address (Authorizer)
     * @param to            Payee's address
     * @param value         Amount to be transferred
     * @param validAfter    The time after which this is valid (unix time)
     * @param validBefore   The time before which this is valid (unix time)
     * @param nonce         Unique nonce
     * @param signature signature in bytes
     */
    function _transferWithAuthorizationValidityCheck(
        address from,
        address to,
        uint256 value,
        uint256 validAfter,
        uint256 validBefore,
        bytes32 nonce,
        bytes memory signature
    ) internal {
        _requireValidAuthorization(from, nonce, validAfter, validBefore);
        _requireValidSignature(
            from,
            keccak256(
                abi.encode(
                    TRANSFER_WITH_AUTHORIZATION_TYPEHASH,
                    from,
                    to,
                    value,
                    validAfter,
                    validBefore,
                    nonce
                )
            ),
            signature
        );

        _markAuthorizationAsUsed(from, nonce);
    }

    /**
     * @notice Receive a transfer with a signed authorization from the payer
     * @dev This has an additional check to ensure that the payee's address
     * matches the caller of this function to prevent front-running attacks.
     * @param from          Payer's address (Authorizer)
     * @param to            Payee's address
     * @param value         Amount to be transferred
     * @param validAfter    The time after which this is valid (unix time)
     * @param validBefore   The time before which this is valid (unix time)
     * @param nonce         Unique nonce
     * @param signature signature in bytes
     */
    function _receiveWithAuthorizationValidityCheck(
        address from,
        address to,
        uint256 value,
        uint256 validAfter,
        uint256 validBefore,
        bytes32 nonce,
        bytes memory signature
    ) internal {
        require(to == msg.sender, "TetherToken: to != msg.sender");
        _requireValidAuthorization(from, nonce, validAfter, validBefore);
        _requireValidSignature(
            from,
            keccak256(
                abi.encode(
                    RECEIVE_WITH_AUTHORIZATION_TYPEHASH,
                    from,
                    to,
                    value,
                    validAfter,
                    validBefore,
                    nonce
                )
            ),
            signature
        );

        _markAuthorizationAsUsed(from, nonce);
    }

    function _cancelAuthorization(
        address authorizer,
        bytes32 nonce,
        bytes memory signature
    ) internal {
        _requireUnusedAuthorization(authorizer, nonce);
        _requireValidSignature(
            authorizer,
            keccak256(
                abi.encode(CANCEL_AUTHORIZATION_TYPEHASH, authorizer, nonce)
            ),
            signature
        );

        _authorizationStates[authorizer][nonce] = true;
        emit AuthorizationCanceled(authorizer, nonce);
    }

    /**
     * @notice Attempt to cancel an authorization
     * @param authorizer    Authorizer's address
     * @param nonce         Nonce of the authorization
     * @param v             v of the signature
     * @param r             r of the signature
     * @param s             s of the signature
     */
    function cancelAuthorization(
        address authorizer,
        bytes32 nonce,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public {
        _cancelAuthorization(authorizer, nonce, abi.encodePacked(r,s,v));
    }

    /**
     * @notice Attempt to cancel an authorization
     * @dev Works only if the authorization is not yet used.
     * EOA wallet signatures should be packed in the order of r, s, v.
     * @param authorizer    Authorizer's address
     * @param nonce         Nonce of the authorization
     * @param signature     Signature bytes signed by an EOA wallet or a contract wallet
     */
    function cancelAuthorization(
        address authorizer,
        bytes32 nonce,
        bytes memory signature
    ) external {
        _cancelAuthorization(authorizer, nonce, signature);
    }

    /**
     * @notice Validates that signature against input data struct
     * @param signer        Signer's address
     * @param dataHash      Hash of encoded data struct
     * @param signature signature in bytes
     */
    function _requireValidSignature(
        address signer,
        bytes32 dataHash,
        bytes memory signature
    ) private view {
        require(
            SignatureChecker.isValidSignatureNow(
                signer,
                MessageHashUtils.toTypedDataHash(domainSeparator(), dataHash),
                signature
            ),
            "TetherToken: invalid signature"
        );
    }

    /**
     * @notice Check that an authorization is unused
     * @param authorizer    Authorizer's address
     * @param nonce         Nonce of the authorization
     */
    function _requireUnusedAuthorization(address authorizer, bytes32 nonce)
        private
        view
    {
        require(
            !_authorizationStates[authorizer][nonce],
            "TetherToken: auth invalid"
        );
    }

    /**
     * @notice Check that authorization is valid
     * @param authorizer    Authorizer's address
     * @param nonce         Nonce of the authorization
     * @param validAfter    The time after which this is valid (unix time)
     * @param validBefore   The time before which this is valid (unix time)
     */
    function _requireValidAuthorization(
        address authorizer,
        bytes32 nonce,
        uint256 validAfter,
        uint256 validBefore
    ) private view {
        require(
            block.timestamp > validAfter,
            "TetherToken: auth early"
        );
        require(block.timestamp < validBefore, "TetherToken: auth expired");
        _requireUnusedAuthorization(authorizer, nonce);
    }

    /**
     * @notice Mark an authorization as used
     * @param authorizer    Authorizer's address
     * @param nonce         Nonce of the authorization
     */
    function _markAuthorizationAsUsed(address authorizer, bytes32 nonce)
        private
    {
        _authorizationStates[authorizer][nonce] = true;
        emit AuthorizationUsed(authorizer, nonce);
    }

    uint256[49] private __gap;
}

// SPDX-License-Identifier: Apache 2.0

pragma solidity 0.8.4;

import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/draft-ERC20PermitUpgradeable.sol";
import "./WithBlockedList.sol";

/*

   Copyright Tether.to 2024

   Version 2.0(a)

   Licensed under the Apache License, Version 2.0
   http://www.apache.org/licenses/LICENSE-2.0

*/

contract TetherToken is
    Initializable,
    ERC20PermitUpgradeable,
    OwnableUpgradeable,
    WithBlockedList
{
    // Unused variable retained to preserve storage slots across upgrades
    mapping(address => bool) public isTrusted;

    uint8 private tetherDecimals;

    function initialize(
        string memory _name,
        string memory _symbol,
        uint8 _decimals
    ) public initializer {
        tetherDecimals = _decimals;
        __Ownable_init();
        __ERC20_init(_name, _symbol);
        __ERC20Permit_init(_name);
    }

    function decimals() public view virtual override returns (uint8) {
        return tetherDecimals;
    }

    function _beforeTokenTransfer(
        address from,
        address to,
        uint256
    ) internal virtual override {
        require(!isBlocked[from] || msg.sender == owner(), "TetherToken: from is blocked");
        require( 
            to != address(this), 
            "TetherToken: transfer to the contract address" 
        ); 
    }

    function transferFrom(
        address _sender,
        address _recipient,
        uint256 _amount
    ) public virtual override onlyNotBlocked returns (bool) {
        return super.transferFrom(_sender, _recipient, _amount);
    }

    function multiTransfer (
        address[] calldata _recipients,
        uint256[] calldata _values
    ) external {
        require(
            _recipients.length == _values.length,
            "TetherToken: multiTransfer mismatch"
        );
        for (uint256 i = 0; i < _recipients.length; i++) {
            transfer(_recipients[i], _values[i]);
        }
    }

    function mint(address _destination, uint256 _amount) public onlyOwner {
        _mint(_destination, _amount);
        emit Mint(_destination, _amount);
    }

    function burnFrom(address _from, uint256 _amount) public onlyOwner {
        _burn(_from, _amount);
        emit Burn(_from, _amount);
    }

    function redeem(uint256 _amount) public onlyOwner {
        _burn(owner(), _amount);
        emit Redeem(_amount);
    }

    function destroyBlockedFunds(address _blockedUser) public onlyOwner {
        require(isBlocked[_blockedUser], "TetherToken: user is not blocked");
        uint256 blockedFunds = balanceOf(_blockedUser);
        _burn(_blockedUser, blockedFunds);
        emit DestroyedBlockedFunds(_blockedUser, blockedFunds);
    }

    event Mint(address indexed _destination, uint256 _amount);
    event Burn(address indexed _from, uint256 _amount);
    event Redeem(uint256 _amount);
    event DestroyedBlockedFunds(address indexed _blockedUser, uint256 _balance);
}

/**
 * SPDX-License-Identifier: Apache-2.0
 *
 * Copyright (c) 2023, Circle Internet Financial, LLC.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * 
 * ---------------------------------------------------------------------
 * 
 * Adapted by Tether.to 2024 for greater flexibility and reusability
 */

pragma solidity >=0.6.12 <0.9.0;

import { ECRecover } from "./ECRecover.sol";
import { IERC1271 } from "../interfaces/IERC1271.sol";

/**
 * @dev Signature verification helper that can be used instead of `ECRecover.recover` to seamlessly support both ECDSA
 * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets.
 *
 * Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/SignatureChecker.sol
 */
library SignatureChecker {
    /**
     * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
     * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECRecover.recover`.
     * @param signer        Address of the claimed signer
     * @param digest        Keccak-256 hash digest of the signed message
     * @param signature signature byte array associated with hash
     */
    function isValidSignatureNow(
        address signer,
        bytes32 digest,
        bytes memory signature
    ) internal view returns (bool) {
        if (!isContract(signer)) {
            return ECRecover.recover(digest, signature) == signer;
        }
        return isValidERC1271SignatureNow(signer, digest, signature);
    }

    /**
     * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
     * against the signer smart contract using ERC1271.
     * @param signer        Address of the claimed signer
     * @param digest        Keccak-256 hash digest of the signed message
     * @param signature     Signature byte array associated with hash
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidERC1271SignatureNow(
        address signer,
        bytes32 digest,
        bytes memory signature
    ) internal view returns (bool) {
        (bool success, bytes memory result) = signer.staticcall(
            abi.encodeWithSelector(
                IERC1271.isValidSignature.selector,
                digest,
                signature
            )
        );
        return (success &&
            result.length >= 32 &&
            abi.decode(result, (bytes32)) ==
            bytes32(IERC1271.isValidSignature.selector));
    }

    /**
     * @dev Checks if the input address is a smart contract.
     */
    function isContract(address addr) internal view returns (bool) {
        uint256 size;
        assembly {
            size := extcodesize(addr)
        }
        return size > 0;
    }
}

// SPDX-License-Identifier: Apache 2.0

pragma solidity 0.8.4;

import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";

/*

   Copyright Tether.to 2020

   Author Will Harborne

   Licensed under the Apache License, Version 2.0
   http://www.apache.org/licenses/LICENSE-2.0

*/


contract WithBlockedList is OwnableUpgradeable {

    /**
     * @dev Reverts if called by a blocked account
     */
    modifier onlyNotBlocked() {
      require(!isBlocked[_msgSender()], "Blocked: msg.sender is blocked");
      _;
    }

    mapping (address => bool) public isBlocked;

    function addToBlockedList (address _user) public onlyOwner {
        isBlocked[_user] = true;
        emit BlockPlaced(_user);
    }

    function removeFromBlockedList (address _user) public onlyOwner {
        isBlocked[_user] = false;
        emit BlockReleased(_user);
    }

    event BlockPlaced(address indexed _user);

    event BlockReleased(address indexed _user);
    
}

/**
 * SPDX-License-Identifier: Apache-2.0
 *
 * Copyright (c) 2023, Circle Internet Financial, LLC.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * 
 * ---------------------------------------------------------------------
 * 
 * Adapted by Tether.to 2024 for greater flexibility and reusability
 */

pragma solidity >=0.6.12 <0.9.0;

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     * Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/MessageHashUtils.sol
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * @param domainSeparator    Domain separator
     * @param structHash         Hashed EIP-712 data struct
     * @return digest            The keccak256 digest of an EIP-712 typed data
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash)
        internal
        pure
        returns (bytes32 digest)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

/**
 * SPDX-License-Identifier: Apache-2.0
 *
 * Copyright (c) 2023, Circle Internet Financial, LLC.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * 
 * ---------------------------------------------------------------------
 * 
 * Adapted by Tether.to 2024 for greater flexibility and reusability
 */

pragma solidity >=0.6.12 <0.9.0;

/**
 * @dev Interface of the ERC1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash          Hash of the data to be signed
     * @param signature     Signature byte array associated with the provided data hash
     * @return magicValue   bytes4 magic value 0x1626ba7e when function passes
     */
    function isValidSignature(bytes32 hash, bytes memory signature)
        external
        view
        returns (bytes4 magicValue);
}

/**
 * SPDX-License-Identifier: Apache-2.0
 *
 * Copyright (c) 2023, Circle Internet Financial, LLC.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * 
 * ---------------------------------------------------------------------
 * 
 * Adapted by Tether.to 2024 for greater flexibility and reusability
 */

pragma solidity >=0.6.12 <0.9.0;

/**
 * @title ECRecover
 * @notice A library that provides a safe ECDSA recovery function
 */
library ECRecover {
    /**
     * @notice Recover signer's address from a signed message
     * @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/65e4ffde586ec89af3b7e9140bdc9235d1254853/contracts/cryptography/ECDSA.sol
     * Modifications: Accept v, r, and s as separate arguments
     * @param digest    Keccak-256 hash digest of the signed message
     * @param v         v of the signature
     * @param r         r of the signature
     * @param s         s of the signature
     * @return Signer address
     */
    function recover(
        bytes32 digest,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (
            uint256(s) >
            0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0
        ) {
            revert("ECRecover: invalid signature 's' value");
        }

        if (v != 27 && v != 28) {
            revert("ECRecover: invalid signature 'v' value");
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(digest, v, r, s);
        require(signer != address(0), "ECRecover: invalid signature");

        return signer;
    }

    /**
     * @notice Recover signer's address from a signed message
     * @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/0053ee040a7ff1dbc39691c9e67a69f564930a88/contracts/utils/cryptography/ECDSA.sol
     * @param digest    Keccak-256 hash digest of the signed message
     * @param signature Signature byte array associated with hash
     * @return Signer address
     */
    function recover(bytes32 digest, bytes memory signature)
        internal
        pure
        returns (address)
    {
        require(signature.length == 65, "ECRecover: invalid signature length");

        bytes32 r;
        bytes32 s;
        uint8 v;

        // ecrecover takes the signature parameters, and the only way to get them
        // currently is to use assembly.
        /// @solidity memory-safe-assembly
        assembly {
            r := mload(add(signature, 0x20))
            s := mload(add(signature, 0x40))
            v := byte(0, mload(add(signature, 0x60)))
        }
        return recover(digest, v, r, s);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "../utils/ContextUpgradeable.sol";
import "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    function __Ownable_init() internal initializer {
        __Context_init_unchained();
        __Ownable_init_unchained();
    }

    function __Ownable_init_unchained() internal initializer {
        _setOwner(_msgSender());
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _setOwner(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _setOwner(newOwner);
    }

    function _setOwner(address newOwner) private {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "./IERC20Upgradeable.sol";
import "./extensions/IERC20MetadataUpgradeable.sol";
import "../../utils/ContextUpgradeable.sol";
import "../../proxy/utils/Initializable.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * The default value of {decimals} is 18. To select a different value for
     * {decimals} you should overload it.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    function __ERC20_init(string memory name_, string memory symbol_) internal initializer {
        __Context_init_unchained();
        __ERC20_init_unchained(name_, symbol_);
    }

    function __ERC20_init_unchained(string memory name_, string memory symbol_) internal initializer {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);

        uint256 currentAllowance = _allowances[sender][_msgSender()];
        require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
        unchecked {
            _approve(sender, _msgSender(), currentAllowance - amount);
        }

        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        uint256 currentAllowance = _allowances[_msgSender()][spender];
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(_msgSender(), spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `sender` to `recipient`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        uint256 senderBalance = _balances[sender];
        require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[sender] = senderBalance - amount;
        }
        _balances[recipient] += amount;

        emit Transfer(sender, recipient, amount);

        _afterTokenTransfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        _balances[account] += amount;
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
        }
        _totalSupply -= amount;

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
    uint256[45] private __gap;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "./draft-IERC20PermitUpgradeable.sol";
import "../ERC20Upgradeable.sol";
import "../../../utils/cryptography/draft-EIP712Upgradeable.sol";
import "../../../utils/cryptography/ECDSAUpgradeable.sol";
import "../../../utils/CountersUpgradeable.sol";
import "../../../proxy/utils/Initializable.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * _Available since v3.4._
 */
abstract contract ERC20PermitUpgradeable is Initializable, ERC20Upgradeable, IERC20PermitUpgradeable, EIP712Upgradeable {
    using CountersUpgradeable for CountersUpgradeable.Counter;

    mapping(address => CountersUpgradeable.Counter) private _nonces;

    // solhint-disable-next-line var-name-mixedcase
    bytes32 private _PERMIT_TYPEHASH;

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    function __ERC20Permit_init(string memory name) internal initializer {
        __Context_init_unchained();
        __EIP712_init_unchained(name, "1");
        __ERC20Permit_init_unchained(name);
    }

    function __ERC20Permit_init_unchained(string memory name) internal initializer {
        _PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");}

    /**
     * @dev See {IERC20Permit-permit}.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        require(block.timestamp <= deadline, "ERC20Permit: expired deadline");

        bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSAUpgradeable.recover(hash, v, r, s);
        require(signer == owner, "ERC20Permit: invalid signature");

        _approve(owner, spender, value);
    }

    /**
     * @dev See {IERC20Permit-nonces}.
     */
    function nonces(address owner) public view virtual override returns (uint256) {
        return _nonces[owner].current();
    }

    /**
     * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return _domainSeparatorV4();
    }

    /**
     * @dev "Consume a nonce": return the current value and increment.
     *
     * _Available since v4.1._
     */
    function _useNonce(address owner) internal virtual returns (uint256 current) {
        CountersUpgradeable.Counter storage nonce = _nonces[owner];
        current = nonce.current();
        nonce.increment();
    }
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal initializer {
        __Context_init_unchained();
    }

    function __Context_init_unchained() internal initializer {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
    uint256[50] private __gap;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     */
    bool private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Modifier to protect an initializer function from being invoked twice.
     */
    modifier initializer() {
        require(_initializing || !_initialized, "Initializable: contract is already initialized");

        bool isTopLevelCall = !_initializing;
        if (isTopLevelCall) {
            _initializing = true;
            _initialized = true;
        }

        _;

        if (isTopLevelCall) {
            _initializing = false;
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20Upgradeable {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "./ECDSAUpgradeable.sol";
import "../../proxy/utils/Initializable.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * _Available since v3.4._
 */
abstract contract EIP712Upgradeable is Initializable {
    /* solhint-disable var-name-mixedcase */
    bytes32 private _HASHED_NAME;
    bytes32 private _HASHED_VERSION;
    bytes32 private constant _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    /* solhint-enable var-name-mixedcase */

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    function __EIP712_init(string memory name, string memory version) internal initializer {
        __EIP712_init_unchained(name, version);
    }

    function __EIP712_init_unchained(string memory name, string memory version) internal initializer {
        bytes32 hashedName = keccak256(bytes(name));
        bytes32 hashedVersion = keccak256(bytes(version));
        _HASHED_NAME = hashedName;
        _HASHED_VERSION = hashedVersion;
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        return _buildDomainSeparator(_TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash());
    }

    function _buildDomainSeparator(
        bytes32 typeHash,
        bytes32 nameHash,
        bytes32 versionHash
    ) private view returns (bytes32) {
        return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSAUpgradeable.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev The hash of the name parameter for the EIP712 domain.
     *
     * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
     * are a concern.
     */
    function _EIP712NameHash() internal virtual view returns (bytes32) {
        return _HASHED_NAME;
    }

    /**
     * @dev The hash of the version parameter for the EIP712 domain.
     *
     * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
     * are a concern.
     */
    function _EIP712VersionHash() internal virtual view returns (bytes32) {
        return _HASHED_VERSION;
    }
    uint256[50] private __gap;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSAUpgradeable {
    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        // Check the signature length
        // - case 65: r,s,v signature (standard)
        // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098) _Available since v4.1._
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return recover(hash, v, r, s);
        } else if (signature.length == 64) {
            bytes32 r;
            bytes32 vs;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly {
                r := mload(add(signature, 0x20))
                vs := mload(add(signature, 0x40))
            }
            return recover(hash, r, vs);
        } else {
            revert("ECDSA: invalid signature length");
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        bytes32 s;
        uint8 v;
        assembly {
            s := and(vs, 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
            v := add(shr(255, vs), 27)
        }
        return recover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`, `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        require(
            uint256(s) <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
            "ECDSA: invalid signature 's' value"
        );
        require(v == 27 || v == 28, "ECDSA: invalid signature 'v' value");

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        require(signer != address(0), "ECDSA: invalid signature");

        return signer;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title Counters
 * @author Matt Condon (@shrugs)
 * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
 * of elements in a mapping, issuing ERC721 ids, or counting request ids.
 *
 * Include with `using Counters for Counters.Counter;`
 */
library CountersUpgradeable {
    struct Counter {
        // This variable should never be directly accessed by users of the library: interactions must be restricted to
        // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
        // this feature: see https://github.com/ethereum/solidity/issues/4637
        uint256 _value; // default: 0
    }

    function current(Counter storage counter) internal view returns (uint256) {
        return counter._value;
    }

    function increment(Counter storage counter) internal {
        unchecked {
            counter._value += 1;
        }
    }

    function decrement(Counter storage counter) internal {
        uint256 value = counter._value;
        require(value > 0, "Counter: decrement overflow");
        unchecked {
            counter._value = value - 1;
        }
    }

    function reset(Counter storage counter) internal {
        counter._value = 0;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "../IERC20Upgradeable.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20MetadataUpgradeable is IERC20Upgradeable {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20PermitUpgradeable {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):