ETH Price: $2,069.46 (-0.07%)
    /

    Contract Diff Checker

    Contract Name:
    Token

    Contract Source Code:

    // SPDX-License-Identifier: UNLICENSED
    
    pragma solidity 0.8.26;
    
    import { Address } from "@oz/utils/Address.sol";
    import { MerkleProof } from "@oz/utils/cryptography/MerkleProof.sol";
    import { Math } from "@oz/utils/math/Math.sol";
    import { EnumerableSet } from "@oz/utils/structs/EnumerableSet.sol";
    import { AccessControlUpgradeable } from "@oz-upgradeable/access/AccessControlUpgradeable.sol";
    import { Initializable } from "@oz-upgradeable/proxy/utils/UUPSUpgradeable.sol";
    import { UUPSUpgradeable } from "@oz-upgradeable/proxy/utils/UUPSUpgradeable.sol";
    import { ERC20Upgradeable } from "@oz-upgradeable/token/ERC20/ERC20Upgradeable.sol";
    import { PausableUpgradeable } from "@oz-upgradeable/utils/PausableUpgradeable.sol";
    
    import { IToken } from "./IToken.sol";
    import { TokenStorage as Storage } from "./TokenStorage.sol";
    import { AccrualData, InitializationBasisPointValues } from "./Types.sol";
    
    /// @title Token
    /// @dev contains all logic for the Token contract
    contract Token is
        IToken,
        UUPSUpgradeable,
        AccessControlUpgradeable,
        ERC20Upgradeable,
        PausableUpgradeable
    {
        using Address for address payable;
        using EnumerableSet for EnumerableSet.AddressSet;
        using EnumerableSet for EnumerableSet.UintSet;
        using Math for uint256;
    
        /// @dev role which can change Token parameters and pause/unpause Token
        bytes32 public constant MANAGER_ROLE = keccak256("MANAGER_ROLE");
        /// @dev role which can upgrade the contract
        bytes32 public constant UPGRADER_ROLE = keccak256("UPGRADER_ROLE");
        /// @dev role which can mint / burn tokens only
        bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");
        /// @dev role which can start new periods, payout ETH and set social root
        bytes32 public constant SERVICE_ROLE = keccak256("SERVICE_ROLE");
    
        // used for floating point calculations
        uint256 public constant SCALE = 10 ** 36;
        // used for fee calculations - not sufficient for floating point calculations
        uint32 public constant BASIS = 1000000000;
    
        /// @dev conversion ratio: 1 ETH = 1,000,000 $TOKEN
        uint256 public constant TOKEN_TO_ETH_RATIO = 1e6;
    
        constructor() {
            _disableInitializers();
        }
    
        /// @inheritdoc IToken
        function __Token_init(
            string memory name,
            string memory symbol,
            address admin,
            address manager,
            address upgrader,
            address service,
            address treasury,
            address tradesWallet,
            InitializationBasisPointValues calldata basisPointValues
        ) external initializer {
            __Pausable_init();
            __AccessControl_init();
            __UUPSUpgradeable_init();
    
            __ERC20_init(name, symbol);
            _grantRole(DEFAULT_ADMIN_ROLE, admin);
            _grantRole(MANAGER_ROLE, manager);
            _grantRole(UPGRADER_ROLE, upgrader);
            _grantRole(MINTER_ROLE, service);
            _grantRole(SERVICE_ROLE, service);
    
            _setTreasury(treasury);
            _setTradesWallet(tradesWallet);
            _setDistributionFractionBP(basisPointValues.distributionFractionBP);
            _setTradesFractionBP(basisPointValues.tradesFractionBP);
            _setTokenBackingFractionBP(basisPointValues.tokenBackingFractionBP);
            _setProtocolFeeBP(basisPointValues.protocolFeeBP);
        }
    
        /// @inheritdoc IToken
        function attempt(
            uint256 gameId,
            string calldata attemptId
        ) external payable whenNotPaused {
            Storage.Layout storage $ = Storage.layout();
    
            if (!$.gameIds.contains(gameId)) {
                revert InvalidGameId();
            }
            if (msg.value == 0) {
                revert ZeroAmountAttempt();
            }
    
            // allocate attempt value
            uint256 fees = msg.value.mulDiv($.protocolFeeBP, BASIS);
            uint256 tradesFundAllocation = msg.value.mulDiv(
                $.tradesFractionBP,
                BASIS
            );
            uint256 tokenBackingAllocation = msg.value.mulDiv(
                $.tokenBackingFractionBP,
                BASIS
            );
            uint256 earnings = msg.value -
                fees -
                tradesFundAllocation -
                tokenBackingAllocation;
    
            $.tradesFund += tradesFundAllocation;
            $.tokenBackingFund += tokenBackingAllocation;
            $.fees += fees;
            $.earnings += earnings;
            $.periodEarnings += earnings;
    
            emit AttemptMade(gameId, _msgSender(), msg.value, attemptId);
        }
    
        /// @inheritdoc IToken
        function attemptWithToken(
            uint256 gameId,
            uint256 amount,
            string calldata attemptId
        ) external whenNotPaused {
            Storage.Layout storage $ = Storage.layout();
    
            if (!$.gameIds.contains(gameId)) {
                revert InvalidGameId();
            }
            // if amount is less than TOKEN_TO_ETH_RATIO less than 1
            // wei is being sent in terms of value
            if (amount < TOKEN_TO_ETH_RATIO) {
                revert ZeroAmountAttempt();
            }
    
            uint256 amountValue = amount / TOKEN_TO_ETH_RATIO;
    
            // allocate attempt value
            uint256 fees = amountValue.mulDiv($.protocolFeeBP, BASIS);
            uint256 tradesFundAllocation = amountValue.mulDiv(
                $.tradesFractionBP,
                BASIS
            );
            uint256 tokenBackingAllocation = amountValue.mulDiv(
                $.tokenBackingFractionBP,
                BASIS
            );
            uint256 earnings = amountValue -
                fees -
                tradesFundAllocation -
                tokenBackingAllocation;
    
            if ($.tokenBackingFund < amountValue - tokenBackingAllocation) {
                revert InsufficientTokenBacking();
            }
    
            _accrueTokens($, _msgSender());
            _burn(_msgSender(), amount);
    
            $.fees += fees;
            $.tradesFund += tradesFundAllocation;
            // consolation decreases since that is where the value for this attempt
            // comes from
            $.tokenBackingFund -= amountValue - tokenBackingAllocation;
            $.earnings += earnings;
            $.periodEarnings += earnings;
    
            emit AttemptWithTokenMade(
                gameId,
                _msgSender(),
                amount,
                amountValue,
                attemptId
            );
        }
    
        /// @inheritdoc IToken
        function addGameId(uint256 id) external onlyRole(MANAGER_ROLE) {
            Storage.layout().gameIds.add(id);
    
            emit GameIdAdded(id);
        }
    
        /// @inheritdoc IToken
        function claim() external {
            Storage.Layout storage $ = Storage.layout();
    
            // accrue tokens prior to claim
            AccrualData storage accountData = _accrueTokens($, _msgSender());
    
            uint256 accruedTokens = accountData.accruedTokens;
    
            // decrease distribution supply by claimed tokens
            $.distributionSupply -= accruedTokens;
    
            // set accruedTokens of account to 0
            accountData.accruedTokens = 0;
    
            _transfer(address(this), _msgSender(), accruedTokens);
        }
    
        /// @inheritdoc IToken
        function claimSocialEarnings(
            bytes32[] calldata proof,
            uint256 amount
        ) external {
            Storage.Layout storage $ = Storage.layout();
    
            bytes32 leaf = keccak256(
                abi.encodePacked(keccak256(abi.encodePacked(_msgSender(), amount)))
            );
    
            if (!MerkleProof.verify(proof, $.socialRoot, leaf)) {
                revert InvalidProof();
            }
    
            uint256 amountEarned = amount - $.socialEarningsDeduction[_msgSender()];
    
            if (amountEarned > $.earnings) {
                revert InsufficientEarnings();
            }
    
            $.earnings -= amountEarned;
            $.tokenBackingFund += amountEarned;
            $.socialEarningsDeduction[_msgSender()] += amountEarned;
    
            _accrueTokens($, _msgSender());
            _mint(_msgSender(), amountEarned * TOKEN_TO_ETH_RATIO);
    
            emit SocialEarningsClaimed(_msgSender(), amountEarned);
        }
    
        /// @inheritdoc IToken
        function disperseTokens(
            address[] calldata recipients,
            uint256[] calldata amounts
        ) external onlyRole(MANAGER_ROLE) {
            Storage.Layout storage $ = Storage.layout();
            uint256 totalAmount;
    
            for (uint256 i = 0; i < recipients.length; ++i) {
                // accrue tokens prior to disperse
                _accrueTokens($, recipients[i]);
    
                _transfer(address(this), recipients[i], amounts[i]);
    
                totalAmount += amounts[i];
            }
    
            $.airdropSupply -= totalAmount;
        }
    
        /// @inheritdoc IToken
        function injectTradesLiquidity() external payable onlyRole(MANAGER_ROLE) {
            Storage.Layout storage $ = Storage.layout();
    
            $.tradesFund += msg.value;
    
            emit TradesLiquidityInjected(msg.value);
        }
    
        /// @inheritdoc IToken
        function injectTokenBackingLiquidity()
            external
            payable
            onlyRole(MANAGER_ROLE)
        {
            Storage.Layout storage $ = Storage.layout();
    
            $.tokenBackingFund += msg.value;
    
            emit TokenBackingLiquidityInjected(msg.value);
        }
    
        /// @inheritdoc IToken
        function mint(
            address account,
            uint256 amount
        ) external onlyRole(MINTER_ROLE) whenNotPaused {
            Storage.Layout storage $ = Storage.layout();
            if ($.distributionFractionBP == 0) {
                revert DistributionFractionNotSet();
            }
            // calculate amount for distribution
            uint256 distributionAmount = amount.mulDiv(
                $.distributionFractionBP,
                BASIS
            );
    
            // decrease amount to mint to account
            amount -= distributionAmount;
    
            uint256 accountBalance = balanceOf(account);
            uint256 supplyDelta = totalSupply() -
                accountBalance -
                $.distributionSupply -
                $.airdropSupply;
    
            AccrualData storage accountData = $.accrualData[account];
    
            // Always calculate and accrue previous token accruals
            uint256 previousAccruals = accountBalance.mulDiv(
                $.globalRatio - accountData.offset,
                SCALE
            );
    
            // Calculate the distribution ratio
            uint256 distributionRatio = distributionAmount.mulDiv(
                SCALE,
                supplyDelta > 0 ? supplyDelta : amount
            );
    
            // Update globalRatio
            $.globalRatio += distributionRatio;
    
            // If supplyDelta is zero, adjust the account offset differently
            if (supplyDelta == 0) {
                // Handle the case where there are no tokens in circulation
                // If this is the first minter, account offset should be one step behind globalRatio
                if ($.globalRatio % distributionRatio == 0) {
                    accountData.offset = $.globalRatio - distributionRatio;
                } else {
                    // Sole holder due to all other minters burning tokens
                    accountData.accruedTokens +=
                        distributionAmount +
                        previousAccruals;
                    accountData.offset = $.globalRatio;
                }
            } else {
                // Normal case where there are other tokens in circulation
                accountData.offset = $.globalRatio;
                accountData.accruedTokens += previousAccruals;
            }
    
            $.distributionSupply += distributionAmount;
    
            // mint tokens to contract and account
            _mint(address(this), distributionAmount);
            _mint(account, amount);
        }
    
        /// @inheritdoc IToken
        function mintAirdrop(
            uint256 amount
        ) external payable onlyRole(MANAGER_ROLE) whenNotPaused {
            Storage.Layout storage $ = Storage.layout();
            _mint(address(this), amount);
    
            if (amount != msg.value * TOKEN_TO_ETH_RATIO) {
                revert IncorrectETHReceived();
            }
    
            // increase supply by the amount minted for airdrop
            $.airdropSupply += amount;
            $.tokenBackingFund += msg.value;
    
            emit AirdropMinted(amount);
        }
    
        /// @inheritdoc IToken
        function pause() external override onlyRole(MANAGER_ROLE) whenNotPaused {
            _pause();
        }
    
        /// @inheritdoc IToken
        function setDistributionFractionBP(
            uint256 distributionFractionBP
        ) external onlyRole(MANAGER_ROLE) {
            _setDistributionFractionBP(distributionFractionBP);
        }
    
        /// @inheritdoc IToken
        function setTradesFractionBP(
            uint256 tradesFractionBP
        ) external onlyRole(MANAGER_ROLE) {
            _setTradesFractionBP(tradesFractionBP);
        }
    
        /// @inheritdoc IToken
        function setTradesWallet(
            address tradesWallet
        ) external onlyRole(MANAGER_ROLE) {
            _setTradesWallet(tradesWallet);
        }
    
        /// @inheritdoc IToken
        function setProtocolFeeBP(
            uint256 protocolFeeBP
        ) external onlyRole(MANAGER_ROLE) {
            _setProtocolFeeBP(protocolFeeBP);
        }
    
        /// @inheritdoc IToken
        function setSocialRoot(bytes32 root) external onlyRole(SERVICE_ROLE) {
            Storage.layout().socialRoot = root;
    
            emit SocialRootSet(root);
        }
    
        /// @inheritdoc IToken
        function setTokenBackingFractionBP(
            uint256 tokenBackingFractionBP
        ) external onlyRole(MANAGER_ROLE) {
            _setTokenBackingFractionBP(tokenBackingFractionBP);
        }
    
        /// @inheritdoc IToken
        function setTreasury(address treasury) external onlyRole(MANAGER_ROLE) {
            _setTreasury(treasury);
        }
    
        /// @inheritdoc IToken
        function startNewPeriod()
            external
            onlyRole(SERVICE_ROLE)
            returns (uint256 currentEarnings)
        {
            Storage.Layout storage $ = Storage.layout();
    
            currentEarnings = $.periodEarnings;
            delete $.periodEarnings;
    
            emit NewPeriodStarted(currentEarnings);
        }
    
        /// @inheritdoc IToken
        function unpause() external override onlyRole(MANAGER_ROLE) whenPaused {
            _unpause();
        }
    
        /// @inheritdoc IToken
        function withdrawEarnings(uint256 amount) external onlyRole(MANAGER_ROLE) {
            Storage.Layout storage $ = Storage.layout();
    
            if ($.earnings < amount) {
                revert InsufficientEarnings();
            }
    
            $.earnings -= amount;
    
            payable($.treasury).sendValue(amount);
    
            emit EarningsWithdrawn(amount);
        }
    
        /// @inheritdoc IToken
        function withdrawFees() external onlyRole(MANAGER_ROLE) {
            Storage.Layout storage $ = Storage.layout();
    
            uint256 fees = $.fees;
            delete $.fees;
    
            payable($.treasury).sendValue(fees);
    
            emit FeesWithdrawn(fees);
        }
    
        /// @inheritdoc IToken
        function withdrawTradesWalletFunds(
            uint256 amount
        ) external onlyRole(MANAGER_ROLE) {
            Storage.Layout storage $ = Storage.layout();
    
            if (amount > $.tradesFund) {
                revert TradesFundTooLow();
            }
    
            $.tradesFund -= amount;
    
            payable($.tradesWallet).sendValue(amount);
    
            emit TradesWalletFunded(amount);
        }
    
        /// @inheritdoc IToken
        function getAccrualData(
            address account
        ) external view returns (AccrualData memory data) {
            data = Storage.layout().accrualData[account];
        }
    
        /// @inheritdoc IToken
        function getAirdropSupply() external view returns (uint256 supply) {
            supply = Storage.layout().airdropSupply;
        }
    
        /// @inheritdoc IToken
        function getClaimableTokens(
            address account
        ) external view returns (uint256 amount) {
            Storage.Layout storage $ = Storage.layout();
            AccrualData storage accountData = $.accrualData[account];
    
            amount =
                balanceOf(account).mulDiv(
                    $.globalRatio - accountData.offset,
                    SCALE
                ) +
                accountData.accruedTokens;
        }
    
        /// @inheritdoc IToken
        function getDistributionFractionBP()
            external
            view
            returns (uint256 fractionBP)
        {
            fractionBP = Storage.layout().distributionFractionBP;
        }
    
        /// @inheritdoc IToken
        function getDistributionSupply() external view returns (uint256 supply) {
            supply = Storage.layout().distributionSupply;
        }
    
        /// @inheritdoc IToken
        function getEarnings() external view returns (uint256 earnings) {
            earnings = Storage.layout().earnings;
        }
    
        /// @inheritdoc IToken
        function getFees() external view returns (uint256 fees) {
            fees = Storage.layout().fees;
        }
    
        /// @inheritdoc IToken
        function getTradesFractionBP() external view returns (uint256 fractionBP) {
            fractionBP = Storage.layout().tradesFractionBP;
        }
    
        /// @inheritdoc IToken
        function getTradesFund() external view returns (uint256 fund) {
            fund = Storage.layout().tradesFund;
        }
    
        /// @inheritdoc IToken
        function getTradesWallet() external view returns (address wallet) {
            wallet = Storage.layout().tradesWallet;
        }
    
        /// @inheritdoc IToken
        function getGameIds() external view returns (uint256[] memory ids) {
            ids = Storage.layout().gameIds.values();
        }
    
        /// @notice returns the global ratio value
        /// @return ratio global ratio value
        function getGlobalRatio() external view returns (uint256 ratio) {
            ratio = Storage.layout().globalRatio;
        }
    
        /// @inheritdoc IToken
        function getPeriodEarnings() external view returns (uint256 earnings) {
            earnings = Storage.layout().periodEarnings;
        }
    
        /// @inheritdoc IToken
        function getProtocolFeeBP() external view returns (uint256 protocolFeeBP) {
            protocolFeeBP = Storage.layout().protocolFeeBP;
        }
    
        /// @inheritdoc IToken
        function getSocialEarningsDeduction(
            address account
        ) external view returns (uint256 deduction) {
            deduction = Storage.layout().socialEarningsDeduction[account];
        }
    
        /// @inheritdoc IToken
        function getSocialRoot() external view returns (bytes32 root) {
            root = Storage.layout().socialRoot;
        }
    
        /// @inheritdoc IToken
        function getTokenBackingFractionBP()
            external
            view
            returns (uint256 fractionBP)
        {
            fractionBP = Storage.layout().tokenBackingFractionBP;
        }
    
        /// @inheritdoc IToken
        function getTokenBackingFund() external view returns (uint256 fund) {
            fund = Storage.layout().tokenBackingFund;
        }
    
        /// @inheritdoc IToken
        function getTreasury() external view returns (address treasury) {
            treasury = Storage.layout().treasury;
        }
    
        /// @notice accrues the tokens available for claiming for an account
        /// @param $ TokenStorage Layout struct
        /// @param account address of account
        /// @return accountData accrualData of given account
        function _accrueTokens(
            Storage.Layout storage $,
            address account
        ) internal returns (AccrualData storage accountData) {
            accountData = $.accrualData[account];
    
            // calculate claimable tokens
            uint256 accruedTokens = balanceOf(account).mulDiv(
                $.globalRatio - accountData.offset,
                SCALE
            );
    
            // update account's last ratio
            accountData.offset = $.globalRatio;
    
            // update claimable tokens
            accountData.accruedTokens += accruedTokens;
        }
    
        /// @inheritdoc UUPSUpgradeable
        function _authorizeUpgrade(
            address
        ) internal override onlyRole(UPGRADER_ROLE) {}
    
        /// @notice sets a new value for distributionFractionBP
        /// @param distributionFractionBP new distributionFractionBP value
        function _setDistributionFractionBP(
            uint256 distributionFractionBP
        ) internal {
            _enforceBasis(distributionFractionBP, BASIS);
    
            Storage.layout().distributionFractionBP = distributionFractionBP;
            emit DistributionFractionSet(distributionFractionBP);
        }
    
        /// @notice sets a new value for tradesFractionBP
        /// @param tradesFractionBP new tradesFractionBP value
        function _setTradesFractionBP(uint256 tradesFractionBP) internal {
            _enforceBasis(tradesFractionBP, BASIS);
            Storage.Layout storage $ = Storage.layout();
    
            if (
                $.tokenBackingFractionBP + $.protocolFeeBP + tradesFractionBP >
                BASIS
            ) {
                revert FractionSumExceedsBasis();
            }
    
            $.tradesFractionBP = tradesFractionBP;
    
            emit TradesFractionSet(tradesFractionBP);
        }
    
        /// @notice sets a new value for tradesWallet
        /// @param tradesWallet new tradesWallet value
        function _setTradesWallet(address tradesWallet) internal {
            _enforceNonZeroAddress(tradesWallet);
    
            Storage.layout().tradesWallet = tradesWallet;
    
            emit TradesWalletSet(tradesWallet);
        }
    
        /// @notice sets a new value for protocolFeeBP
        /// @param feeBP new protocolFeeBP value
        function _setProtocolFeeBP(uint256 feeBP) internal {
            _enforceBasis(feeBP, BASIS);
    
            Storage.Layout storage $ = Storage.layout();
    
            if ($.tokenBackingFractionBP + $.tradesFractionBP + feeBP > BASIS) {
                revert FractionSumExceedsBasis();
            }
    
            $.protocolFeeBP = feeBP;
    
            emit ProtocolFeeSet(feeBP);
        }
    
        /// @notice sets a new value for tokenBackingFractionBP
        /// @param tokenBackingFractionBP new tokenBackingFractionBP value
        function _setTokenBackingFractionBP(
            uint256 tokenBackingFractionBP
        ) internal {
            _enforceBasis(tokenBackingFractionBP, BASIS);
    
            Storage.Layout storage $ = Storage.layout();
    
            if (
                $.tradesFractionBP + $.protocolFeeBP + tokenBackingFractionBP >
                BASIS
            ) {
                revert FractionSumExceedsBasis();
            }
    
            $.tokenBackingFractionBP = tokenBackingFractionBP;
    
            emit TokenBackingFractionSet(tokenBackingFractionBP);
        }
    
        /// @notice sets a new value for treasury
        /// @param treasury new treasury value
        function _setTreasury(address treasury) internal {
            _enforceNonZeroAddress(treasury);
    
            Storage.layout().treasury = treasury;
    
            emit TreasurySet(treasury);
        }
    
        /// @notice enforces that an address is not the zero address
        /// @param addressToCheck address to check
        function _enforceNonZeroAddress(address addressToCheck) internal pure {
            if (addressToCheck == address(0)) {
                revert ZeroAddress();
            }
        }
    
        /// @inheritdoc ERC20Upgradeable
        /// @dev overrides _update hook to enforce non-transferability
        function _update(
            address from,
            address to,
            uint256 value
        ) internal virtual override {
            if (from != address(0) && from != address(this)) {
                if (to != address(0)) {
                    revert NonTransferable();
                }
            }
    
            super._update(from, to, value);
        }
    
        /// @notice enforces that a value does not exceed the basis
        /// @param value value to check
        /// @param basis basis to check against
        function _enforceBasis(uint256 value, uint256 basis) internal pure {
            if (value > basis) {
                revert BasisExceeded();
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
    
    pragma solidity ^0.8.20;
    
    import {Errors} from "./Errors.sol";
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev There's no code at `target` (it is not a contract).
         */
        error AddressEmptyCode(address target);
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            if (address(this).balance < amount) {
                revert Errors.InsufficientBalance(address(this).balance, amount);
            }
    
            (bool success, ) = recipient.call{value: amount}("");
            if (!success) {
                revert Errors.FailedCall();
            }
        }
    
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason or custom error, it is bubbled
         * up by this function (like regular Solidity function calls). However, if
         * the call reverted with no returned reason, this function reverts with a
         * {Errors.FailedCall} error.
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            if (address(this).balance < value) {
                revert Errors.InsufficientBalance(address(this).balance, value);
            }
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
    
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
         * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
         * of an unsuccessful call.
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata
        ) internal view returns (bytes memory) {
            if (!success) {
                _revert(returndata);
            } else {
                // only check if target is a contract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                if (returndata.length == 0 && target.code.length == 0) {
                    revert AddressEmptyCode(target);
                }
                return returndata;
            }
        }
    
        /**
         * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
         * revert reason or with a default {Errors.FailedCall} error.
         */
        function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
            if (!success) {
                _revert(returndata);
            } else {
                return returndata;
            }
        }
    
        /**
         * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
         */
        function _revert(bytes memory returndata) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                assembly ("memory-safe") {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert Errors.FailedCall();
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)
    // This file was procedurally generated from scripts/generate/templates/MerkleProof.js.
    
    pragma solidity ^0.8.20;
    
    import {Hashes} from "./Hashes.sol";
    
    /**
     * @dev These functions deal with verification of Merkle Tree proofs.
     *
     * The tree and the proofs can be generated using our
     * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     * You will find a quickstart guide in the readme.
     *
     * WARNING: You should avoid using leaf values that are 64 bytes long prior to
     * hashing, or use a hash function other than keccak256 for hashing leaves.
     * This is because the concatenation of a sorted pair of internal nodes in
     * the Merkle tree could be reinterpreted as a leaf value.
     * OpenZeppelin's JavaScript library generates Merkle trees that are safe
     * against this attack out of the box.
     *
     * IMPORTANT: Consider memory side-effects when using custom hashing functions
     * that access memory in an unsafe way.
     *
     * NOTE: This library supports proof verification for merkle trees built using
     * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
     * leaf inclusion in trees built using non-commutative hashing functions requires
     * additional logic that is not supported by this library.
     */
    library MerkleProof {
        /**
         *@dev The multiproof provided is not valid.
         */
        error MerkleProofInvalidMultiproof();
    
        /**
         * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
         * defined by `root`. For this, a `proof` must be provided, containing
         * sibling hashes on the branch from the leaf to the root of the tree. Each
         * pair of leaves and each pair of pre-images are assumed to be sorted.
         *
         * This version handles proofs in memory with the default hashing function.
         */
        function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
            return processProof(proof, leaf) == root;
        }
    
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. When processing the proof, the pairs
         * of leafs & pre-images are assumed to be sorted.
         *
         * This version handles proofs in memory with the default hashing function.
         */
        function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
            }
            return computedHash;
        }
    
        /**
         * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
         * defined by `root`. For this, a `proof` must be provided, containing
         * sibling hashes on the branch from the leaf to the root of the tree. Each
         * pair of leaves and each pair of pre-images are assumed to be sorted.
         *
         * This version handles proofs in memory with a custom hashing function.
         */
        function verify(
            bytes32[] memory proof,
            bytes32 root,
            bytes32 leaf,
            function(bytes32, bytes32) view returns (bytes32) hasher
        ) internal view returns (bool) {
            return processProof(proof, leaf, hasher) == root;
        }
    
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. When processing the proof, the pairs
         * of leafs & pre-images are assumed to be sorted.
         *
         * This version handles proofs in memory with a custom hashing function.
         */
        function processProof(
            bytes32[] memory proof,
            bytes32 leaf,
            function(bytes32, bytes32) view returns (bytes32) hasher
        ) internal view returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = hasher(computedHash, proof[i]);
            }
            return computedHash;
        }
    
        /**
         * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
         * defined by `root`. For this, a `proof` must be provided, containing
         * sibling hashes on the branch from the leaf to the root of the tree. Each
         * pair of leaves and each pair of pre-images are assumed to be sorted.
         *
         * This version handles proofs in calldata with the default hashing function.
         */
        function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
            return processProofCalldata(proof, leaf) == root;
        }
    
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. When processing the proof, the pairs
         * of leafs & pre-images are assumed to be sorted.
         *
         * This version handles proofs in calldata with the default hashing function.
         */
        function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
            }
            return computedHash;
        }
    
        /**
         * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
         * defined by `root`. For this, a `proof` must be provided, containing
         * sibling hashes on the branch from the leaf to the root of the tree. Each
         * pair of leaves and each pair of pre-images are assumed to be sorted.
         *
         * This version handles proofs in calldata with a custom hashing function.
         */
        function verifyCalldata(
            bytes32[] calldata proof,
            bytes32 root,
            bytes32 leaf,
            function(bytes32, bytes32) view returns (bytes32) hasher
        ) internal view returns (bool) {
            return processProofCalldata(proof, leaf, hasher) == root;
        }
    
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. When processing the proof, the pairs
         * of leafs & pre-images are assumed to be sorted.
         *
         * This version handles proofs in calldata with a custom hashing function.
         */
        function processProofCalldata(
            bytes32[] calldata proof,
            bytes32 leaf,
            function(bytes32, bytes32) view returns (bytes32) hasher
        ) internal view returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = hasher(computedHash, proof[i]);
            }
            return computedHash;
        }
    
        /**
         * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
         * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
         *
         * This version handles multiproofs in memory with the default hashing function.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
         * The `leaves` must be validated independently. See {processMultiProof}.
         */
        function multiProofVerify(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProof(proof, proofFlags, leaves) == root;
        }
    
        /**
         * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
         * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
         * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
         * respectively.
         *
         * This version handles multiproofs in memory with the default hashing function.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
         * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
         * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
         *
         * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
         * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
         * validating the leaves elsewhere.
         */
        function processMultiProof(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the Merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 proofFlagsLen = proofFlags.length;
    
            // Check proof validity.
            if (leavesLen + proof.length != proofFlagsLen + 1) {
                revert MerkleProofInvalidMultiproof();
            }
    
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](proofFlagsLen);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < proofFlagsLen; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i]
                    ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                    : proof[proofPos++];
                hashes[i] = Hashes.commutativeKeccak256(a, b);
            }
    
            if (proofFlagsLen > 0) {
                if (proofPos != proof.length) {
                    revert MerkleProofInvalidMultiproof();
                }
                unchecked {
                    return hashes[proofFlagsLen - 1];
                }
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
    
        /**
         * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
         * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
         *
         * This version handles multiproofs in memory with a custom hashing function.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
         * The `leaves` must be validated independently. See {processMultiProof}.
         */
        function multiProofVerify(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32 root,
            bytes32[] memory leaves,
            function(bytes32, bytes32) view returns (bytes32) hasher
        ) internal view returns (bool) {
            return processMultiProof(proof, proofFlags, leaves, hasher) == root;
        }
    
        /**
         * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
         * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
         * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
         * respectively.
         *
         * This version handles multiproofs in memory with a custom hashing function.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
         * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
         * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
         *
         * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
         * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
         * validating the leaves elsewhere.
         */
        function processMultiProof(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32[] memory leaves,
            function(bytes32, bytes32) view returns (bytes32) hasher
        ) internal view returns (bytes32 merkleRoot) {
            // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the Merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 proofFlagsLen = proofFlags.length;
    
            // Check proof validity.
            if (leavesLen + proof.length != proofFlagsLen + 1) {
                revert MerkleProofInvalidMultiproof();
            }
    
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](proofFlagsLen);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < proofFlagsLen; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i]
                    ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                    : proof[proofPos++];
                hashes[i] = hasher(a, b);
            }
    
            if (proofFlagsLen > 0) {
                if (proofPos != proof.length) {
                    revert MerkleProofInvalidMultiproof();
                }
                unchecked {
                    return hashes[proofFlagsLen - 1];
                }
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
    
        /**
         * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
         * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
         *
         * This version handles multiproofs in calldata with the default hashing function.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
         * The `leaves` must be validated independently. See {processMultiProofCalldata}.
         */
        function multiProofVerifyCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProofCalldata(proof, proofFlags, leaves) == root;
        }
    
        /**
         * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
         * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
         * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
         * respectively.
         *
         * This version handles multiproofs in calldata with the default hashing function.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
         * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
         * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
         *
         * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
         * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
         * validating the leaves elsewhere.
         */
        function processMultiProofCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the Merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 proofFlagsLen = proofFlags.length;
    
            // Check proof validity.
            if (leavesLen + proof.length != proofFlagsLen + 1) {
                revert MerkleProofInvalidMultiproof();
            }
    
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](proofFlagsLen);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < proofFlagsLen; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i]
                    ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                    : proof[proofPos++];
                hashes[i] = Hashes.commutativeKeccak256(a, b);
            }
    
            if (proofFlagsLen > 0) {
                if (proofPos != proof.length) {
                    revert MerkleProofInvalidMultiproof();
                }
                unchecked {
                    return hashes[proofFlagsLen - 1];
                }
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
    
        /**
         * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
         * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
         *
         * This version handles multiproofs in calldata with a custom hashing function.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
         * The `leaves` must be validated independently. See {processMultiProofCalldata}.
         */
        function multiProofVerifyCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32 root,
            bytes32[] memory leaves,
            function(bytes32, bytes32) view returns (bytes32) hasher
        ) internal view returns (bool) {
            return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
        }
    
        /**
         * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
         * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
         * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
         * respectively.
         *
         * This version handles multiproofs in calldata with a custom hashing function.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
         * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
         * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
         *
         * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
         * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
         * validating the leaves elsewhere.
         */
        function processMultiProofCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32[] memory leaves,
            function(bytes32, bytes32) view returns (bytes32) hasher
        ) internal view returns (bytes32 merkleRoot) {
            // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the Merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 proofFlagsLen = proofFlags.length;
    
            // Check proof validity.
            if (leavesLen + proof.length != proofFlagsLen + 1) {
                revert MerkleProofInvalidMultiproof();
            }
    
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](proofFlagsLen);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < proofFlagsLen; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i]
                    ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                    : proof[proofPos++];
                hashes[i] = hasher(a, b);
            }
    
            if (proofFlagsLen > 0) {
                if (proofPos != proof.length) {
                    revert MerkleProofInvalidMultiproof();
                }
                unchecked {
                    return hashes[proofFlagsLen - 1];
                }
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
    
    pragma solidity ^0.8.20;
    
    import {Panic} from "../Panic.sol";
    import {SafeCast} from "./SafeCast.sol";
    
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Floor, // Toward negative infinity
            Ceil, // Toward positive infinity
            Trunc, // Toward zero
            Expand // Away from zero
        }
    
        /**
         * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
         */
        function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
            unchecked {
                uint256 c = a + b;
                if (c < a) return (false, 0);
                return (true, c);
            }
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
         */
        function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
            unchecked {
                if (b > a) return (false, 0);
                return (true, a - b);
            }
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
         */
        function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
            unchecked {
                // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                // benefit is lost if 'b' is also tested.
                // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                if (a == 0) return (true, 0);
                uint256 c = a * b;
                if (c / a != b) return (false, 0);
                return (true, c);
            }
        }
    
        /**
         * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
         */
        function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
            unchecked {
                if (b == 0) return (false, 0);
                return (true, a / b);
            }
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
         */
        function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
            unchecked {
                if (b == 0) return (false, 0);
                return (true, a % b);
            }
        }
    
        /**
         * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
         *
         * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
         * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
         * one branch when needed, making this function more expensive.
         */
        function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
            unchecked {
                // branchless ternary works because:
                // b ^ (a ^ b) == a
                // b ^ 0 == b
                return b ^ ((a ^ b) * SafeCast.toUint(condition));
            }
        }
    
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return ternary(a > b, a, b);
        }
    
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return ternary(a < b, a, b);
        }
    
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
    
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds towards infinity instead
         * of rounding towards zero.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            if (b == 0) {
                // Guarantee the same behavior as in a regular Solidity division.
                Panic.panic(Panic.DIVISION_BY_ZERO);
            }
    
            // The following calculation ensures accurate ceiling division without overflow.
            // Since a is non-zero, (a - 1) / b will not overflow.
            // The largest possible result occurs when (a - 1) / b is type(uint256).max,
            // but the largest value we can obtain is type(uint256).max - 1, which happens
            // when a = type(uint256).max and b = 1.
            unchecked {
                return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
            }
        }
    
        /**
         * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
         * denominator == 0.
         *
         * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
         * Uniswap Labs also under MIT license.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
                // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2²⁵⁶ + prod0.
                uint256 prod0 = x * y; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
    
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                    // The surrounding unchecked block does not change this fact.
                    // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                    return prod0 / denominator;
                }
    
                // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
                if (denominator <= prod1) {
                    Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
                }
    
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
    
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
    
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
    
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
    
                uint256 twos = denominator & (0 - denominator);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
    
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
    
                    // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
    
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
    
                // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
                // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
                uint256 inverse = (3 * denominator) ^ 2;
    
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                // works in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2⁸
                inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
                inverse *= 2 - denominator * inverse; // inverse mod 2³²
                inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
                inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
                inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
    
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
                // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
    
        /**
         * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
            return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
        }
    
        /**
         * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
         *
         * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
         * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
         *
         * If the input value is not inversible, 0 is returned.
         *
         * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
         * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
         */
        function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
            unchecked {
                if (n == 0) return 0;
    
                // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
                // Used to compute integers x and y such that: ax + ny = gcd(a, n).
                // When the gcd is 1, then the inverse of a modulo n exists and it's x.
                // ax + ny = 1
                // ax = 1 + (-y)n
                // ax ≡ 1 (mod n) # x is the inverse of a modulo n
    
                // If the remainder is 0 the gcd is n right away.
                uint256 remainder = a % n;
                uint256 gcd = n;
    
                // Therefore the initial coefficients are:
                // ax + ny = gcd(a, n) = n
                // 0a + 1n = n
                int256 x = 0;
                int256 y = 1;
    
                while (remainder != 0) {
                    uint256 quotient = gcd / remainder;
    
                    (gcd, remainder) = (
                        // The old remainder is the next gcd to try.
                        remainder,
                        // Compute the next remainder.
                        // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                        // where gcd is at most n (capped to type(uint256).max)
                        gcd - remainder * quotient
                    );
    
                    (x, y) = (
                        // Increment the coefficient of a.
                        y,
                        // Decrement the coefficient of n.
                        // Can overflow, but the result is casted to uint256 so that the
                        // next value of y is "wrapped around" to a value between 0 and n - 1.
                        x - y * int256(quotient)
                    );
                }
    
                if (gcd != 1) return 0; // No inverse exists.
                return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
            }
        }
    
        /**
         * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
         *
         * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
         * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
         * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
         *
         * NOTE: this function does NOT check that `p` is a prime greater than `2`.
         */
        function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
            unchecked {
                return Math.modExp(a, p - 2, p);
            }
        }
    
        /**
         * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
         *
         * Requirements:
         * - modulus can't be zero
         * - underlying staticcall to precompile must succeed
         *
         * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
         * sure the chain you're using it on supports the precompiled contract for modular exponentiation
         * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
         * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
         * interpreted as 0.
         */
        function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
            (bool success, uint256 result) = tryModExp(b, e, m);
            if (!success) {
                Panic.panic(Panic.DIVISION_BY_ZERO);
            }
            return result;
        }
    
        /**
         * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
         * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
         * to operate modulo 0 or if the underlying precompile reverted.
         *
         * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
         * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
         * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
         * of a revert, but the result may be incorrectly interpreted as 0.
         */
        function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
            if (m == 0) return (false, 0);
            assembly ("memory-safe") {
                let ptr := mload(0x40)
                // | Offset    | Content    | Content (Hex)                                                      |
                // |-----------|------------|--------------------------------------------------------------------|
                // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                // | 0x60:0x7f | value of b | 0x<.............................................................b> |
                // | 0x80:0x9f | value of e | 0x<.............................................................e> |
                // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
                mstore(ptr, 0x20)
                mstore(add(ptr, 0x20), 0x20)
                mstore(add(ptr, 0x40), 0x20)
                mstore(add(ptr, 0x60), b)
                mstore(add(ptr, 0x80), e)
                mstore(add(ptr, 0xa0), m)
    
                // Given the result < m, it's guaranteed to fit in 32 bytes,
                // so we can use the memory scratch space located at offset 0.
                success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
                result := mload(0x00)
            }
        }
    
        /**
         * @dev Variant of {modExp} that supports inputs of arbitrary length.
         */
        function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
            (bool success, bytes memory result) = tryModExp(b, e, m);
            if (!success) {
                Panic.panic(Panic.DIVISION_BY_ZERO);
            }
            return result;
        }
    
        /**
         * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
         */
        function tryModExp(
            bytes memory b,
            bytes memory e,
            bytes memory m
        ) internal view returns (bool success, bytes memory result) {
            if (_zeroBytes(m)) return (false, new bytes(0));
    
            uint256 mLen = m.length;
    
            // Encode call args in result and move the free memory pointer
            result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
    
            assembly ("memory-safe") {
                let dataPtr := add(result, 0x20)
                // Write result on top of args to avoid allocating extra memory.
                success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
                // Overwrite the length.
                // result.length > returndatasize() is guaranteed because returndatasize() == m.length
                mstore(result, mLen)
                // Set the memory pointer after the returned data.
                mstore(0x40, add(dataPtr, mLen))
            }
        }
    
        /**
         * @dev Returns whether the provided byte array is zero.
         */
        function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
            for (uint256 i = 0; i < byteArray.length; ++i) {
                if (byteArray[i] != 0) {
                    return false;
                }
            }
            return true;
        }
    
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
         * towards zero.
         *
         * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
         * using integer operations.
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            unchecked {
                // Take care of easy edge cases when a == 0 or a == 1
                if (a <= 1) {
                    return a;
                }
    
                // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
                // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
                // the current value as `ε_n = | x_n - sqrt(a) |`.
                //
                // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
                // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
                // bigger than any uint256.
                //
                // By noticing that
                // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
                // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
                // to the msb function.
                uint256 aa = a;
                uint256 xn = 1;
    
                if (aa >= (1 << 128)) {
                    aa >>= 128;
                    xn <<= 64;
                }
                if (aa >= (1 << 64)) {
                    aa >>= 64;
                    xn <<= 32;
                }
                if (aa >= (1 << 32)) {
                    aa >>= 32;
                    xn <<= 16;
                }
                if (aa >= (1 << 16)) {
                    aa >>= 16;
                    xn <<= 8;
                }
                if (aa >= (1 << 8)) {
                    aa >>= 8;
                    xn <<= 4;
                }
                if (aa >= (1 << 4)) {
                    aa >>= 4;
                    xn <<= 2;
                }
                if (aa >= (1 << 2)) {
                    xn <<= 1;
                }
    
                // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
                //
                // We can refine our estimation by noticing that the middle of that interval minimizes the error.
                // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
                // This is going to be our x_0 (and ε_0)
                xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
    
                // From here, Newton's method give us:
                // x_{n+1} = (x_n + a / x_n) / 2
                //
                // One should note that:
                // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
                //              = ((x_n² + a) / (2 * x_n))² - a
                //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
                //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
                //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
                //              = (x_n² - a)² / (2 * x_n)²
                //              = ((x_n² - a) / (2 * x_n))²
                //              ≥ 0
                // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
                //
                // This gives us the proof of quadratic convergence of the sequence:
                // ε_{n+1} = | x_{n+1} - sqrt(a) |
                //         = | (x_n + a / x_n) / 2 - sqrt(a) |
                //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
                //         = | (x_n - sqrt(a))² / (2 * x_n) |
                //         = | ε_n² / (2 * x_n) |
                //         = ε_n² / | (2 * x_n) |
                //
                // For the first iteration, we have a special case where x_0 is known:
                // ε_1 = ε_0² / | (2 * x_0) |
                //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
                //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
                //     ≤ 2**(e-3) / 3
                //     ≤ 2**(e-3-log2(3))
                //     ≤ 2**(e-4.5)
                //
                // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
                // ε_{n+1} = ε_n² / | (2 * x_n) |
                //         ≤ (2**(e-k))² / (2 * 2**(e-1))
                //         ≤ 2**(2*e-2*k) / 2**e
                //         ≤ 2**(e-2*k)
                xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
                xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
                xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
                xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
                xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
                xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72
    
                // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
                // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
                // sqrt(a) or sqrt(a) + 1.
                return xn - SafeCast.toUint(xn > a / xn);
            }
        }
    
        /**
         * @dev Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
            }
        }
    
        /**
         * @dev Return the log in base 2 of a positive value rounded towards zero.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            uint256 exp;
            unchecked {
                exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
                value >>= exp;
                result += exp;
    
                exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
                value >>= exp;
                result += exp;
    
                exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
                value >>= exp;
                result += exp;
    
                exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
                value >>= exp;
                result += exp;
    
                exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
                value >>= exp;
                result += exp;
    
                exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
                value >>= exp;
                result += exp;
    
                exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
                value >>= exp;
                result += exp;
    
                result += SafeCast.toUint(value > 1);
            }
            return result;
        }
    
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
            }
        }
    
        /**
         * @dev Return the log in base 10 of a positive value rounded towards zero.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10 ** 64) {
                    value /= 10 ** 64;
                    result += 64;
                }
                if (value >= 10 ** 32) {
                    value /= 10 ** 32;
                    result += 32;
                }
                if (value >= 10 ** 16) {
                    value /= 10 ** 16;
                    result += 16;
                }
                if (value >= 10 ** 8) {
                    value /= 10 ** 8;
                    result += 8;
                }
                if (value >= 10 ** 4) {
                    value /= 10 ** 4;
                    result += 4;
                }
                if (value >= 10 ** 2) {
                    value /= 10 ** 2;
                    result += 2;
                }
                if (value >= 10 ** 1) {
                    result += 1;
                }
            }
            return result;
        }
    
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
            }
        }
    
        /**
         * @dev Return the log in base 256 of a positive value rounded towards zero.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            uint256 isGt;
            unchecked {
                isGt = SafeCast.toUint(value > (1 << 128) - 1);
                value >>= isGt * 128;
                result += isGt * 16;
    
                isGt = SafeCast.toUint(value > (1 << 64) - 1);
                value >>= isGt * 64;
                result += isGt * 8;
    
                isGt = SafeCast.toUint(value > (1 << 32) - 1);
                value >>= isGt * 32;
                result += isGt * 4;
    
                isGt = SafeCast.toUint(value > (1 << 16) - 1);
                value >>= isGt * 16;
                result += isGt * 2;
    
                result += SafeCast.toUint(value > (1 << 8) - 1);
            }
            return result;
        }
    
        /**
         * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
            }
        }
    
        /**
         * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
         */
        function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
            return uint8(rounding) % 2 == 1;
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol)
    // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Library for managing
     * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
     * types.
     *
     * Sets have the following properties:
     *
     * - Elements are added, removed, and checked for existence in constant time
     * (O(1)).
     * - Elements are enumerated in O(n). No guarantees are made on the ordering.
     *
     * ```solidity
     * contract Example {
     *     // Add the library methods
     *     using EnumerableSet for EnumerableSet.AddressSet;
     *
     *     // Declare a set state variable
     *     EnumerableSet.AddressSet private mySet;
     * }
     * ```
     *
     * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
     * and `uint256` (`UintSet`) are supported.
     *
     * [WARNING]
     * ====
     * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
     * unusable.
     * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
     *
     * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
     * array of EnumerableSet.
     * ====
     */
    library EnumerableSet {
        // To implement this library for multiple types with as little code
        // repetition as possible, we write it in terms of a generic Set type with
        // bytes32 values.
        // The Set implementation uses private functions, and user-facing
        // implementations (such as AddressSet) are just wrappers around the
        // underlying Set.
        // This means that we can only create new EnumerableSets for types that fit
        // in bytes32.
    
        struct Set {
            // Storage of set values
            bytes32[] _values;
            // Position is the index of the value in the `values` array plus 1.
            // Position 0 is used to mean a value is not in the set.
            mapping(bytes32 value => uint256) _positions;
        }
    
        /**
         * @dev Add a value to a set. O(1).
         *
         * Returns true if the value was added to the set, that is if it was not
         * already present.
         */
        function _add(Set storage set, bytes32 value) private returns (bool) {
            if (!_contains(set, value)) {
                set._values.push(value);
                // The value is stored at length-1, but we add 1 to all indexes
                // and use 0 as a sentinel value
                set._positions[value] = set._values.length;
                return true;
            } else {
                return false;
            }
        }
    
        /**
         * @dev Removes a value from a set. O(1).
         *
         * Returns true if the value was removed from the set, that is if it was
         * present.
         */
        function _remove(Set storage set, bytes32 value) private returns (bool) {
            // We cache the value's position to prevent multiple reads from the same storage slot
            uint256 position = set._positions[value];
    
            if (position != 0) {
                // Equivalent to contains(set, value)
                // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
                // the array, and then remove the last element (sometimes called as 'swap and pop').
                // This modifies the order of the array, as noted in {at}.
    
                uint256 valueIndex = position - 1;
                uint256 lastIndex = set._values.length - 1;
    
                if (valueIndex != lastIndex) {
                    bytes32 lastValue = set._values[lastIndex];
    
                    // Move the lastValue to the index where the value to delete is
                    set._values[valueIndex] = lastValue;
                    // Update the tracked position of the lastValue (that was just moved)
                    set._positions[lastValue] = position;
                }
    
                // Delete the slot where the moved value was stored
                set._values.pop();
    
                // Delete the tracked position for the deleted slot
                delete set._positions[value];
    
                return true;
            } else {
                return false;
            }
        }
    
        /**
         * @dev Returns true if the value is in the set. O(1).
         */
        function _contains(Set storage set, bytes32 value) private view returns (bool) {
            return set._positions[value] != 0;
        }
    
        /**
         * @dev Returns the number of values on the set. O(1).
         */
        function _length(Set storage set) private view returns (uint256) {
            return set._values.length;
        }
    
        /**
         * @dev Returns the value stored at position `index` in the set. O(1).
         *
         * Note that there are no guarantees on the ordering of values inside the
         * array, and it may change when more values are added or removed.
         *
         * Requirements:
         *
         * - `index` must be strictly less than {length}.
         */
        function _at(Set storage set, uint256 index) private view returns (bytes32) {
            return set._values[index];
        }
    
        /**
         * @dev Return the entire set in an array
         *
         * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
         * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
         * this function has an unbounded cost, and using it as part of a state-changing function may render the function
         * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
         */
        function _values(Set storage set) private view returns (bytes32[] memory) {
            return set._values;
        }
    
        // Bytes32Set
    
        struct Bytes32Set {
            Set _inner;
        }
    
        /**
         * @dev Add a value to a set. O(1).
         *
         * Returns true if the value was added to the set, that is if it was not
         * already present.
         */
        function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
            return _add(set._inner, value);
        }
    
        /**
         * @dev Removes a value from a set. O(1).
         *
         * Returns true if the value was removed from the set, that is if it was
         * present.
         */
        function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
            return _remove(set._inner, value);
        }
    
        /**
         * @dev Returns true if the value is in the set. O(1).
         */
        function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
            return _contains(set._inner, value);
        }
    
        /**
         * @dev Returns the number of values in the set. O(1).
         */
        function length(Bytes32Set storage set) internal view returns (uint256) {
            return _length(set._inner);
        }
    
        /**
         * @dev Returns the value stored at position `index` in the set. O(1).
         *
         * Note that there are no guarantees on the ordering of values inside the
         * array, and it may change when more values are added or removed.
         *
         * Requirements:
         *
         * - `index` must be strictly less than {length}.
         */
        function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
            return _at(set._inner, index);
        }
    
        /**
         * @dev Return the entire set in an array
         *
         * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
         * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
         * this function has an unbounded cost, and using it as part of a state-changing function may render the function
         * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
         */
        function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
            bytes32[] memory store = _values(set._inner);
            bytes32[] memory result;
    
            assembly ("memory-safe") {
                result := store
            }
    
            return result;
        }
    
        // AddressSet
    
        struct AddressSet {
            Set _inner;
        }
    
        /**
         * @dev Add a value to a set. O(1).
         *
         * Returns true if the value was added to the set, that is if it was not
         * already present.
         */
        function add(AddressSet storage set, address value) internal returns (bool) {
            return _add(set._inner, bytes32(uint256(uint160(value))));
        }
    
        /**
         * @dev Removes a value from a set. O(1).
         *
         * Returns true if the value was removed from the set, that is if it was
         * present.
         */
        function remove(AddressSet storage set, address value) internal returns (bool) {
            return _remove(set._inner, bytes32(uint256(uint160(value))));
        }
    
        /**
         * @dev Returns true if the value is in the set. O(1).
         */
        function contains(AddressSet storage set, address value) internal view returns (bool) {
            return _contains(set._inner, bytes32(uint256(uint160(value))));
        }
    
        /**
         * @dev Returns the number of values in the set. O(1).
         */
        function length(AddressSet storage set) internal view returns (uint256) {
            return _length(set._inner);
        }
    
        /**
         * @dev Returns the value stored at position `index` in the set. O(1).
         *
         * Note that there are no guarantees on the ordering of values inside the
         * array, and it may change when more values are added or removed.
         *
         * Requirements:
         *
         * - `index` must be strictly less than {length}.
         */
        function at(AddressSet storage set, uint256 index) internal view returns (address) {
            return address(uint160(uint256(_at(set._inner, index))));
        }
    
        /**
         * @dev Return the entire set in an array
         *
         * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
         * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
         * this function has an unbounded cost, and using it as part of a state-changing function may render the function
         * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
         */
        function values(AddressSet storage set) internal view returns (address[] memory) {
            bytes32[] memory store = _values(set._inner);
            address[] memory result;
    
            assembly ("memory-safe") {
                result := store
            }
    
            return result;
        }
    
        // UintSet
    
        struct UintSet {
            Set _inner;
        }
    
        /**
         * @dev Add a value to a set. O(1).
         *
         * Returns true if the value was added to the set, that is if it was not
         * already present.
         */
        function add(UintSet storage set, uint256 value) internal returns (bool) {
            return _add(set._inner, bytes32(value));
        }
    
        /**
         * @dev Removes a value from a set. O(1).
         *
         * Returns true if the value was removed from the set, that is if it was
         * present.
         */
        function remove(UintSet storage set, uint256 value) internal returns (bool) {
            return _remove(set._inner, bytes32(value));
        }
    
        /**
         * @dev Returns true if the value is in the set. O(1).
         */
        function contains(UintSet storage set, uint256 value) internal view returns (bool) {
            return _contains(set._inner, bytes32(value));
        }
    
        /**
         * @dev Returns the number of values in the set. O(1).
         */
        function length(UintSet storage set) internal view returns (uint256) {
            return _length(set._inner);
        }
    
        /**
         * @dev Returns the value stored at position `index` in the set. O(1).
         *
         * Note that there are no guarantees on the ordering of values inside the
         * array, and it may change when more values are added or removed.
         *
         * Requirements:
         *
         * - `index` must be strictly less than {length}.
         */
        function at(UintSet storage set, uint256 index) internal view returns (uint256) {
            return uint256(_at(set._inner, index));
        }
    
        /**
         * @dev Return the entire set in an array
         *
         * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
         * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
         * this function has an unbounded cost, and using it as part of a state-changing function may render the function
         * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
         */
        function values(UintSet storage set) internal view returns (uint256[] memory) {
            bytes32[] memory store = _values(set._inner);
            uint256[] memory result;
    
            assembly ("memory-safe") {
                result := store
            }
    
            return result;
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)
    
    pragma solidity ^0.8.20;
    
    import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";
    import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
    import {ERC165Upgradeable} from "../utils/introspection/ERC165Upgradeable.sol";
    import {Initializable} from "../proxy/utils/Initializable.sol";
    
    /**
     * @dev Contract module that allows children to implement role-based access
     * control mechanisms. This is a lightweight version that doesn't allow enumerating role
     * members except through off-chain means by accessing the contract event logs. Some
     * applications may benefit from on-chain enumerability, for those cases see
     * {AccessControlEnumerable}.
     *
     * Roles are referred to by their `bytes32` identifier. These should be exposed
     * in the external API and be unique. The best way to achieve this is by
     * using `public constant` hash digests:
     *
     * ```solidity
     * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
     * ```
     *
     * Roles can be used to represent a set of permissions. To restrict access to a
     * function call, use {hasRole}:
     *
     * ```solidity
     * function foo() public {
     *     require(hasRole(MY_ROLE, msg.sender));
     *     ...
     * }
     * ```
     *
     * Roles can be granted and revoked dynamically via the {grantRole} and
     * {revokeRole} functions. Each role has an associated admin role, and only
     * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
     *
     * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
     * that only accounts with this role will be able to grant or revoke other
     * roles. More complex role relationships can be created by using
     * {_setRoleAdmin}.
     *
     * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
     * grant and revoke this role. Extra precautions should be taken to secure
     * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
     * to enforce additional security measures for this role.
     */
    abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControl, ERC165Upgradeable {
        struct RoleData {
            mapping(address account => bool) hasRole;
            bytes32 adminRole;
        }
    
        bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
    
    
        /// @custom:storage-location erc7201:openzeppelin.storage.AccessControl
        struct AccessControlStorage {
            mapping(bytes32 role => RoleData) _roles;
        }
    
        // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControl")) - 1)) & ~bytes32(uint256(0xff))
        bytes32 private constant AccessControlStorageLocation = 0x02dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800;
    
        function _getAccessControlStorage() private pure returns (AccessControlStorage storage $) {
            assembly {
                $.slot := AccessControlStorageLocation
            }
        }
    
        /**
         * @dev Modifier that checks that an account has a specific role. Reverts
         * with an {AccessControlUnauthorizedAccount} error including the required role.
         */
        modifier onlyRole(bytes32 role) {
            _checkRole(role);
            _;
        }
    
        function __AccessControl_init() internal onlyInitializing {
        }
    
        function __AccessControl_init_unchained() internal onlyInitializing {
        }
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
            return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
        }
    
        /**
         * @dev Returns `true` if `account` has been granted `role`.
         */
        function hasRole(bytes32 role, address account) public view virtual returns (bool) {
            AccessControlStorage storage $ = _getAccessControlStorage();
            return $._roles[role].hasRole[account];
        }
    
        /**
         * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
         * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
         */
        function _checkRole(bytes32 role) internal view virtual {
            _checkRole(role, _msgSender());
        }
    
        /**
         * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
         * is missing `role`.
         */
        function _checkRole(bytes32 role, address account) internal view virtual {
            if (!hasRole(role, account)) {
                revert AccessControlUnauthorizedAccount(account, role);
            }
        }
    
        /**
         * @dev Returns the admin role that controls `role`. See {grantRole} and
         * {revokeRole}.
         *
         * To change a role's admin, use {_setRoleAdmin}.
         */
        function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
            AccessControlStorage storage $ = _getAccessControlStorage();
            return $._roles[role].adminRole;
        }
    
        /**
         * @dev Grants `role` to `account`.
         *
         * If `account` had not been already granted `role`, emits a {RoleGranted}
         * event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         *
         * May emit a {RoleGranted} event.
         */
        function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
            _grantRole(role, account);
        }
    
        /**
         * @dev Revokes `role` from `account`.
         *
         * If `account` had been granted `role`, emits a {RoleRevoked} event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         *
         * May emit a {RoleRevoked} event.
         */
        function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
            _revokeRole(role, account);
        }
    
        /**
         * @dev Revokes `role` from the calling account.
         *
         * Roles are often managed via {grantRole} and {revokeRole}: this function's
         * purpose is to provide a mechanism for accounts to lose their privileges
         * if they are compromised (such as when a trusted device is misplaced).
         *
         * If the calling account had been revoked `role`, emits a {RoleRevoked}
         * event.
         *
         * Requirements:
         *
         * - the caller must be `callerConfirmation`.
         *
         * May emit a {RoleRevoked} event.
         */
        function renounceRole(bytes32 role, address callerConfirmation) public virtual {
            if (callerConfirmation != _msgSender()) {
                revert AccessControlBadConfirmation();
            }
    
            _revokeRole(role, callerConfirmation);
        }
    
        /**
         * @dev Sets `adminRole` as ``role``'s admin role.
         *
         * Emits a {RoleAdminChanged} event.
         */
        function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
            AccessControlStorage storage $ = _getAccessControlStorage();
            bytes32 previousAdminRole = getRoleAdmin(role);
            $._roles[role].adminRole = adminRole;
            emit RoleAdminChanged(role, previousAdminRole, adminRole);
        }
    
        /**
         * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
         *
         * Internal function without access restriction.
         *
         * May emit a {RoleGranted} event.
         */
        function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
            AccessControlStorage storage $ = _getAccessControlStorage();
            if (!hasRole(role, account)) {
                $._roles[role].hasRole[account] = true;
                emit RoleGranted(role, account, _msgSender());
                return true;
            } else {
                return false;
            }
        }
    
        /**
         * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
         *
         * Internal function without access restriction.
         *
         * May emit a {RoleRevoked} event.
         */
        function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
            AccessControlStorage storage $ = _getAccessControlStorage();
            if (hasRole(role, account)) {
                $._roles[role].hasRole[account] = false;
                emit RoleRevoked(role, account, _msgSender());
                return true;
            } else {
                return false;
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/UUPSUpgradeable.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol";
    import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol";
    import {Initializable} from "./Initializable.sol";
    
    /**
     * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
     * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
     *
     * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
     * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
     * `UUPSUpgradeable` with a custom implementation of upgrades.
     *
     * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
     */
    abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable {
        /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
        address private immutable __self = address(this);
    
        /**
         * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
         * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
         * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
         * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
         * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
         * during an upgrade.
         */
        string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";
    
        /**
         * @dev The call is from an unauthorized context.
         */
        error UUPSUnauthorizedCallContext();
    
        /**
         * @dev The storage `slot` is unsupported as a UUID.
         */
        error UUPSUnsupportedProxiableUUID(bytes32 slot);
    
        /**
         * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
         * a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
         * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
         * function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
         * fail.
         */
        modifier onlyProxy() {
            _checkProxy();
            _;
        }
    
        /**
         * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
         * callable on the implementing contract but not through proxies.
         */
        modifier notDelegated() {
            _checkNotDelegated();
            _;
        }
    
        function __UUPSUpgradeable_init() internal onlyInitializing {
        }
    
        function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
        }
        /**
         * @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
         * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
         *
         * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
         * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
         * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
         */
        function proxiableUUID() external view virtual notDelegated returns (bytes32) {
            return ERC1967Utils.IMPLEMENTATION_SLOT;
        }
    
        /**
         * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
         * encoded in `data`.
         *
         * Calls {_authorizeUpgrade}.
         *
         * Emits an {Upgraded} event.
         *
         * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
         */
        function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
            _authorizeUpgrade(newImplementation);
            _upgradeToAndCallUUPS(newImplementation, data);
        }
    
        /**
         * @dev Reverts if the execution is not performed via delegatecall or the execution
         * context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
         * See {_onlyProxy}.
         */
        function _checkProxy() internal view virtual {
            if (
                address(this) == __self || // Must be called through delegatecall
                ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
            ) {
                revert UUPSUnauthorizedCallContext();
            }
        }
    
        /**
         * @dev Reverts if the execution is performed via delegatecall.
         * See {notDelegated}.
         */
        function _checkNotDelegated() internal view virtual {
            if (address(this) != __self) {
                // Must not be called through delegatecall
                revert UUPSUnauthorizedCallContext();
            }
        }
    
        /**
         * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
         * {upgradeToAndCall}.
         *
         * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
         *
         * ```solidity
         * function _authorizeUpgrade(address) internal onlyOwner {}
         * ```
         */
        function _authorizeUpgrade(address newImplementation) internal virtual;
    
        /**
         * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
         *
         * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
         * is expected to be the implementation slot in ERC-1967.
         *
         * Emits an {IERC1967-Upgraded} event.
         */
        function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
            try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
                    revert UUPSUnsupportedProxiableUUID(slot);
                }
                ERC1967Utils.upgradeToAndCall(newImplementation, data);
            } catch {
                // The implementation is not UUPS
                revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
    import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
    import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
    import {Initializable} from "../../proxy/utils/Initializable.sol";
    
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * The default value of {decimals} is 18. To change this, you should override
     * this function so it returns a different value.
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC-20
     * applications.
     */
    abstract contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20, IERC20Metadata, IERC20Errors {
        /// @custom:storage-location erc7201:openzeppelin.storage.ERC20
        struct ERC20Storage {
            mapping(address account => uint256) _balances;
    
            mapping(address account => mapping(address spender => uint256)) _allowances;
    
            uint256 _totalSupply;
    
            string _name;
            string _symbol;
        }
    
        // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff))
        bytes32 private constant ERC20StorageLocation = 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00;
    
        function _getERC20Storage() private pure returns (ERC20Storage storage $) {
            assembly {
                $.slot := ERC20StorageLocation
            }
        }
    
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
            __ERC20_init_unchained(name_, symbol_);
        }
    
        function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
            ERC20Storage storage $ = _getERC20Storage();
            $._name = name_;
            $._symbol = symbol_;
        }
    
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual returns (string memory) {
            ERC20Storage storage $ = _getERC20Storage();
            return $._name;
        }
    
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual returns (string memory) {
            ERC20Storage storage $ = _getERC20Storage();
            return $._symbol;
        }
    
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the default value returned by this function, unless
         * it's overridden.
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual returns (uint8) {
            return 18;
        }
    
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual returns (uint256) {
            ERC20Storage storage $ = _getERC20Storage();
            return $._totalSupply;
        }
    
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual returns (uint256) {
            ERC20Storage storage $ = _getERC20Storage();
            return $._balances[account];
        }
    
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `value`.
         */
        function transfer(address to, uint256 value) public virtual returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, value);
            return true;
        }
    
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual returns (uint256) {
            ERC20Storage storage $ = _getERC20Storage();
            return $._allowances[owner][spender];
        }
    
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 value) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, value);
            return true;
        }
    
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Skips emitting an {Approval} event indicating an allowance update. This is not
         * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `value`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `value`.
         */
        function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, value);
            _transfer(from, to, value);
            return true;
        }
    
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead.
         */
        function _transfer(address from, address to, uint256 value) internal {
            if (from == address(0)) {
                revert ERC20InvalidSender(address(0));
            }
            if (to == address(0)) {
                revert ERC20InvalidReceiver(address(0));
            }
            _update(from, to, value);
        }
    
        /**
         * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
         * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
         * this function.
         *
         * Emits a {Transfer} event.
         */
        function _update(address from, address to, uint256 value) internal virtual {
            ERC20Storage storage $ = _getERC20Storage();
            if (from == address(0)) {
                // Overflow check required: The rest of the code assumes that totalSupply never overflows
                $._totalSupply += value;
            } else {
                uint256 fromBalance = $._balances[from];
                if (fromBalance < value) {
                    revert ERC20InsufficientBalance(from, fromBalance, value);
                }
                unchecked {
                    // Overflow not possible: value <= fromBalance <= totalSupply.
                    $._balances[from] = fromBalance - value;
                }
            }
    
            if (to == address(0)) {
                unchecked {
                    // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                    $._totalSupply -= value;
                }
            } else {
                unchecked {
                    // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                    $._balances[to] += value;
                }
            }
    
            emit Transfer(from, to, value);
        }
    
        /**
         * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
         * Relies on the `_update` mechanism
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead.
         */
        function _mint(address account, uint256 value) internal {
            if (account == address(0)) {
                revert ERC20InvalidReceiver(address(0));
            }
            _update(address(0), account, value);
        }
    
        /**
         * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
         * Relies on the `_update` mechanism.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead
         */
        function _burn(address account, uint256 value) internal {
            if (account == address(0)) {
                revert ERC20InvalidSender(address(0));
            }
            _update(account, address(0), value);
        }
    
        /**
         * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         *
         * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
         */
        function _approve(address owner, address spender, uint256 value) internal {
            _approve(owner, spender, value, true);
        }
    
        /**
         * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
         *
         * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
         * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
         * `Approval` event during `transferFrom` operations.
         *
         * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
         * true using the following override:
         *
         * ```solidity
         * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
         *     super._approve(owner, spender, value, true);
         * }
         * ```
         *
         * Requirements are the same as {_approve}.
         */
        function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
            ERC20Storage storage $ = _getERC20Storage();
            if (owner == address(0)) {
                revert ERC20InvalidApprover(address(0));
            }
            if (spender == address(0)) {
                revert ERC20InvalidSpender(address(0));
            }
            $._allowances[owner][spender] = value;
            if (emitEvent) {
                emit Approval(owner, spender, value);
            }
        }
    
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `value`.
         *
         * Does not update the allowance value in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Does not emit an {Approval} event.
         */
        function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                if (currentAllowance < value) {
                    revert ERC20InsufficientAllowance(spender, currentAllowance, value);
                }
                unchecked {
                    _approve(owner, spender, currentAllowance - value, false);
                }
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
    
    pragma solidity ^0.8.20;
    
    import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
    import {Initializable} from "../proxy/utils/Initializable.sol";
    
    /**
     * @dev Contract module which allows children to implement an emergency stop
     * mechanism that can be triggered by an authorized account.
     *
     * This module is used through inheritance. It will make available the
     * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
     * the functions of your contract. Note that they will not be pausable by
     * simply including this module, only once the modifiers are put in place.
     */
    abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
        /// @custom:storage-location erc7201:openzeppelin.storage.Pausable
        struct PausableStorage {
            bool _paused;
        }
    
        // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff))
        bytes32 private constant PausableStorageLocation = 0xcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300;
    
        function _getPausableStorage() private pure returns (PausableStorage storage $) {
            assembly {
                $.slot := PausableStorageLocation
            }
        }
    
        /**
         * @dev Emitted when the pause is triggered by `account`.
         */
        event Paused(address account);
    
        /**
         * @dev Emitted when the pause is lifted by `account`.
         */
        event Unpaused(address account);
    
        /**
         * @dev The operation failed because the contract is paused.
         */
        error EnforcedPause();
    
        /**
         * @dev The operation failed because the contract is not paused.
         */
        error ExpectedPause();
    
        /**
         * @dev Initializes the contract in unpaused state.
         */
        function __Pausable_init() internal onlyInitializing {
            __Pausable_init_unchained();
        }
    
        function __Pausable_init_unchained() internal onlyInitializing {
            PausableStorage storage $ = _getPausableStorage();
            $._paused = false;
        }
    
        /**
         * @dev Modifier to make a function callable only when the contract is not paused.
         *
         * Requirements:
         *
         * - The contract must not be paused.
         */
        modifier whenNotPaused() {
            _requireNotPaused();
            _;
        }
    
        /**
         * @dev Modifier to make a function callable only when the contract is paused.
         *
         * Requirements:
         *
         * - The contract must be paused.
         */
        modifier whenPaused() {
            _requirePaused();
            _;
        }
    
        /**
         * @dev Returns true if the contract is paused, and false otherwise.
         */
        function paused() public view virtual returns (bool) {
            PausableStorage storage $ = _getPausableStorage();
            return $._paused;
        }
    
        /**
         * @dev Throws if the contract is paused.
         */
        function _requireNotPaused() internal view virtual {
            if (paused()) {
                revert EnforcedPause();
            }
        }
    
        /**
         * @dev Throws if the contract is not paused.
         */
        function _requirePaused() internal view virtual {
            if (!paused()) {
                revert ExpectedPause();
            }
        }
    
        /**
         * @dev Triggers stopped state.
         *
         * Requirements:
         *
         * - The contract must not be paused.
         */
        function _pause() internal virtual whenNotPaused {
            PausableStorage storage $ = _getPausableStorage();
            $._paused = true;
            emit Paused(_msgSender());
        }
    
        /**
         * @dev Returns to normal state.
         *
         * Requirements:
         *
         * - The contract must be paused.
         */
        function _unpause() internal virtual whenPaused {
            PausableStorage storage $ = _getPausableStorage();
            $._paused = false;
            emit Unpaused(_msgSender());
        }
    }

    // SPDX-License-Identifier: UNLICENSED
    
    pragma solidity 0.8.26;
    
    import { AccrualData, InitializationBasisPointValues } from "./Types.sol";
    /// @title IToken
    /// @dev interface for Token contract containing all events, errors, and external/public functions
    
    interface IToken {
        /// @notice thrown when attempting to set a value larger than basis
        error BasisExceeded();
    
        /// @notice thrown when attempting to mint but distribution fraction has not been set or is zero
        error DistributionFractionNotSet();
    
        /// @notice thrown when attempting to set a new value which would mean that the sum of all
        /// fractions to be taken from the attempt amount exceeds basis
        error FractionSumExceedsBasis();
    
        /// @notice thrown when attempting to mint an airdrop without sending enough ETH to `Token` contract
        error IncorrectETHReceived();
    
        /// @notice thrown when attempting to withdarw an amount larger than current earnings
        error InsufficientEarnings();
    
        /// @notice thrown when attempting a mint attempt with Token but there is insufficient token backing
        /// to cover the attempt
        error InsufficientTokenBacking();
    
        /// @notice thrown when attempting on a gameId not contained in gameIds enumerable set
        error InvalidGameId();
    
        /// @notice thrown when the proof for a social claim is not matching the _msgSender() claiming and amount to claim
        error InvalidProof();
    
        /// @notice thrown when attempting to withdraw trades wallet funds but the amount is greater than the current
        /// trades fund amount
        error TradesFundTooLow();
    
        /// @notice thrown when attempting to transfer tokens and the from address is neither
        /// the zero-address, nor the contract address, or the to address is not the zero address
        error NonTransferable();
    
        /// @notice thrown when attempting to set a value to the zero address
        error ZeroAddress();
    
        /// @notice thrown when attempting on a game with zero amount ie zending 0 tokens or native currency (ETH)
        error ZeroAmountAttempt();
    
        /// @notice emitted when an attempt is made on a game
        /// @param gameId of game being attempted
        /// @param account address of account attempting game
        /// @param amount msg.value received on attempt call
        /// @param attemptId UUID of attempt
        event AttemptMade(
            uint256 gameId,
            address account,
            uint256 amount,
            string attemptId
        );
    
        /// @notice emitted when an attempt is made on a game, with `Token` used as payment
        /// @param gameId of game being attempted
        /// @param account address of account attempting game
        /// @param amount amount of `Token` received
        /// @param amountValue amount of ETH corresponding to `Token` amount received
        /// @param attemptId UUID of attempt
        event AttemptWithTokenMade(
            uint256 gameId,
            address account,
            uint256 amount,
            uint256 amountValue,
            string attemptId
        );
    
        /// @notice emitted when an airdrop is minted
        /// @param amount `Token` amount to mint for airdrop
        event AirdropMinted(uint256 amount);
    
        /// @notice emitted when a new distributionFractionBP value is set
        /// @param distributionFractionBP the new distributionFractionBP value
        event DistributionFractionSet(uint256 distributionFractionBP);
    
        /// @notice emitted when earnings are withdrawn
        /// @param amount earnings withdrawn
        event EarningsWithdrawn(uint256 amount);
    
        /// @notice emitted when fees are withdraw and sent to reasury
        event FeesWithdrawn(uint256 fees);
    
        /// @notice emitted when a new gameId is added to gameIds
        /// @param gameId id of new game
        event GameIdAdded(uint256 gameId);
    
        /// @notice emitted when a new value of tradesFractionBP is set
        /// @param tradesFractionBP new tradesFractionBP value
        event TradesFractionSet(uint256 tradesFractionBP);
    
        /// @notice emitted when a new value of tradesWallet is set
        /// @param wallet new tradesWallet value
        event TradesWalletSet(address wallet);
    
        /// @notice emitted when trades funds are sent to trades wallet
        /// @param amount funded
        event TradesWalletFunded(uint256 amount);
    
        /// @notice emitted when an account is added to minters
        /// @param account address of account
        event MinterAdded(address account);
    
        /// @notice emitted when an account is removed from minters
        /// @param account address of account
        event MinterRemoved(address account);
    
        /// @notice emitted when a new period for earnings has started
        /// @param currentEarnings value of period earnings at end of last period
        event NewPeriodStarted(uint256 currentEarnings);
    
        /// @notice emitted when a new value of protocolFeeBP is set
        /// @param protocolFeeBP new protocolFeeBP value
        event ProtocolFeeSet(uint256 protocolFeeBP);
    
        /// @notice emitted when an account claims social earnings
        /// @param account address of account which claimed
        /// @param amount amount claimed as social earnings
        event SocialEarningsClaimed(address account, uint256 amount);
    
        /// @notice emitted when a new socialRoot value is set
        /// @param root new socialRoot value
        event SocialRootSet(bytes32 root);
    
        /// @notice emitted when a new value of tokenBackingFractionBP is set
        /// @param fractionBP new tokenBackingFractionBP value
        event TokenBackingFractionSet(uint256 fractionBP);
    
        /// @notice emitted when token backing funds are injected
        /// @param amount injected
        event TokenBackingLiquidityInjected(uint256 amount);
    
        /// @notice emitted when trades funds are injected
        /// @param amount injected
        event TradesLiquidityInjected(uint256 amount);
    
        /// @notice emitted when a new value of treasury is set
        /// @param treasury new treasury value
        event TreasurySet(address treasury);
    
        /// @notice initializing function of Token contract
        /// @param name name of Token
        /// @param symbol symbol of Token
        /// @param admin address of DEFAULT_ADMIN
        /// @param manager address of manager
        /// @param upgrader address of ugprader
        /// @param service address of service responsible for minting, burning, starting new periods,
        /// paying out ETH and setting social root
        /// @param treasury address of treasury
        /// @param tradesWallet address of wallet to receive trades funds
        /// @param basisPointValues InitializationBasisPointValues struct containing distributionFractionBP, tradesFractionBP,
        /// tokenBackingFractionBP, and protocolFeeBP
        function __Token_init(
            string memory name,
            string memory symbol,
            address admin,
            address manager,
            address upgrader,
            address service,
            address treasury,
            address tradesWallet,
            InitializationBasisPointValues calldata basisPointValues
        ) external;
    
        /// @notice adds a new game id to gameIds
        /// @param id new game id
        function addGameId(uint256 id) external;
    
        /// @notice makes an attempt on a game matching gameId on behalf of _msgSender()
        /// @param gameId id of game being attempted
        /// @param attemptId UUID of attempt
        function attempt(
            uint256 gameId,
            string calldata attemptId
        ) external payable;
    
        /// @notice makes an attempt on a game matching gameId on behalf of _msgSender()
        /// using `Token` as payment
        /// @param gameId id of game being attempted
        /// @param size amount of `Token` used as payment
        /// @param attemptId UUID of attempt
        function attemptWithToken(
            uint256 gameId,
            uint256 size,
            string calldata attemptId
        ) external;
    
        /// @notice claims all claimable tokens for the _msgSender()
        function claim() external;
    
        /// @notice sends an amount of ETH as social earnings to _msgSender() from the `earnings`
        /// @param proof merkle proof data to verify against
        /// @param amount total amount earned thus far by _msgSender()
        function claimSocialEarnings(
            bytes32[] calldata proof,
            uint256 amount
        ) external;
    
        /// @notice Disperses tokens to a list of recipients
        /// @param recipients assumed ordered array of recipient addresses
        /// @param amounts assumed ordered array of token amounts to disperse
        function disperseTokens(
            address[] calldata recipients,
            uint256[] calldata amounts
        ) external;
    
        /// @notice returns AccrualData struct pertaining to account, which contains Token accrual
        /// information
        /// @param account address of account
        /// @return data AccrualData of account
        function getAccrualData(
            address account
        ) external view returns (AccrualData memory data);
    
        /// @notice returns value of airdropSupply
        /// @return supply value of airdropSupply
        function getAirdropSupply() external view returns (uint256 supply);
    
        /// @notice returns all claimable tokens of a given account
        /// @param account address of account
        /// @return amount amount of claimable tokens
        function getClaimableTokens(
            address account
        ) external view returns (uint256 amount);
    
        /// @notice returns the distributionFractionBP value
        /// @return fractionBP value of distributionFractionBP
        function getDistributionFractionBP()
            external
            view
            returns (uint256 fractionBP);
    
        /// @notice returns the distribution supply value
        /// @return supply distribution supply value
        function getDistributionSupply() external view returns (uint256 supply);
    
        /// @notice returns earnings from attempts
        /// @return earnings current earnings
        function getEarnings() external view returns (uint256 earnings);
    
        /// @notice returns fees earned from attempts
        /// @return fees current fees accrued from mint attempts
        function getFees() external view returns (uint256 fees);
    
        /// @notice returns the trades fraction in basis points
        /// @return fractionBP value of trades fraction in basis points
        function getTradesFractionBP() external view returns (uint256 fractionBP);
    
        /// @notice returns the trades fund value
        /// @return fund value of trades fund
        function getTradesFund() external view returns (uint256 fund);
    
        /// @notice returns the trades wallet address
        /// @return wallet address of trades wallet
        function getTradesWallet() external view returns (address wallet);
    
        /// @notice returns game ids of games which can be played
        /// @return ids array of game ids which can be played
        function getGameIds() external view returns (uint256[] memory ids);
    
        /// @notice returns the global ratio value
        /// @return ratio global ratio value
        function getGlobalRatio() external view returns (uint256 ratio);
    
        /// @notice returns the period earnings value
        /// @return earnings current value of period earnings
        function getPeriodEarnings() external view returns (uint256 earnings);
    
        /// @notice returns value of protocol fee in basis points
        /// @return protocolFeeBP value of protocol fee in basis points
        function getProtocolFeeBP() external view returns (uint256 protocolFeeBP);
    
        /// @notice returns the social earnings deduction of an account
        /// @param account address of account to get deductions for
        /// @return deduction social earnings deduction of account
        function getSocialEarningsDeduction(
            address account
        ) external view returns (uint256 deduction);
    
        /// @notice retruns value of socialRoot
        /// @return root value of socialRoot
        function getSocialRoot() external view returns (bytes32 root);
    
        /// @notice returns value of tokenBackingFractionBP
        /// @return fractionBP value of tokenBackingFractionBP
        function getTokenBackingFractionBP()
            external
            view
            returns (uint256 fractionBP);
    
        /// @notice returns value of tokenBackingFund
        /// @return fund value of tokenBackingFund
        function getTokenBackingFund() external view returns (uint256 fund);
    
        /// @notice returns address of treasury
        /// @return treasury address of treasury
        function getTreasury() external view returns (address treasury);
    
        /// @notice injects liquidity into the trades fund
        function injectTradesLiquidity() external payable;
    
        /// @notice injects liquidity into the token backing fund
        function injectTokenBackingLiquidity() external payable;
    
        /// @notice mint an amount of tokens to an account
        /// @param account address of account receive the tokens
        /// @param amount amount of tokens to mint
        function mint(address account, uint256 amount) external;
    
        /// @notice mints an amount of tokens intended for airdrop
        /// @param amount airdrop token amount
        function mintAirdrop(uint256 amount) external payable;
    
        /// @notice pauses minting
        function pause() external;
    
        /// @notice sets a new value for distributionFractionBP
        /// @param distributionFractionBP new distributionFractionBP value
        function setDistributionFractionBP(uint256 distributionFractionBP) external;
    
        /// @notice sets a new value for tradesFractionBP
        /// @param tradesFractionBP new tradesFractionBP value
        function setTradesFractionBP(uint256 tradesFractionBP) external;
    
        /// @notice sets a new value for tradesWallet
        /// @param tradesWallet new tradesWallet value
        function setTradesWallet(address tradesWallet) external;
    
        /// @notice sets a new value for protocolFeeBP
        /// @param protocolFeeBP new protocolFeeBP value
        function setProtocolFeeBP(uint256 protocolFeeBP) external;
    
        /// @notice begins a new period for earnings
        /// @return currentEarnings returns current value of earnings for given period
        function startNewPeriod() external returns (uint256 currentEarnings);
    
        /// @notice  sets a new value for the socialRoot
        /// @param root new socialRoot value
        function setSocialRoot(bytes32 root) external;
    
        /// @notice sets a new value for tokenBackingFractionBP
        /// @param tokenBackingFractionBP new tokenBackingFractionBP value
        function setTokenBackingFractionBP(uint256 tokenBackingFractionBP) external;
    
        /// @notice sets a new value for treasury
        /// @param treasury new treasury value
        function setTreasury(address treasury) external;
    
        /// @notice unpauses minting
        function unpause() external;
    
        /// @notice withdraws an amount of ETH from earnings and sends to treasury
        /// @param amount withdrawal amount
        function withdrawEarnings(uint256 amount) external;
    
        /// @notice withdraws fees and sends to treasury
        function withdrawFees() external;
    
        /// @notice withdraws an amount of trades funds and sends to trades wallet
        /// @param amount withdrawal amount
        function withdrawTradesWalletFunds(uint256 amount) external;
    }

    // SPDX-License-Identifier: UNLICENSED
    
    pragma solidity 0.8.26;
    
    import { AccrualData } from "./Types.sol";
    import { EnumerableSet } from "@oz/utils/structs/EnumerableSet.sol";
    
    /// @title TokenStorage
    /// @dev defines storage layout for the Token facet
    library TokenStorage {
        struct Layout {
            /// @dev ratio of distributionSupply to totalSupply
            uint256 globalRatio;
            /// @dev number of tokens held for distribution to token holders
            uint256 distributionSupply;
            /// @dev number of tokens held for airdrop dispersion
            uint256 airdropSupply;
            /// @dev fraction of tokens to be reserved for distribution to token holders in basis points
            uint256 distributionFractionBP;
            /// @dev fraction of attempt value going to trades fund in basis points
            uint256 tradesFractionBP;
            /// @dev fraction of attempt value going to token backing fund in basis points
            uint256 tokenBackingFractionBP;
            /// @dev fraction of mint attempt value as fees for protocol in basis points
            uint256 protocolFeeBP;
            /// @dev earnigns in current period
            uint256 periodEarnings;
            /// @dev currently held ETH earnings from mint attempts
            uint256 earnings;
            /// @dev currently held ETH accumulated from fees on mint attempts
            uint256 fees;
            /// @dev currently held ETH in trades fund
            uint256 tradesFund;
            /// @dev currently held ETH in token backing fund
            uint256 tokenBackingFund;
            /// @dev root of merkleTree responsible for accounting for earnings due to social activity
            bytes32 socialRoot;
            /// @dev address to send fees to
            address treasury;
            /// @dev address to send trade funds to
            address tradesWallet;
            /// @dev information related to Token accruals for an account
            mapping(address account => AccrualData data) accrualData;
            /// @dev deduction on social earnings for an account
            mapping(address account => uint256 deduction) socialEarningsDeduction;
            /// @dev set of game ids currently active
            EnumerableSet.UintSet gameIds;
        }
    
        bytes32 internal constant STORAGE_SLOT =
            keccak256("insrt.contracts.v3.storage.MintToken");
    
        function layout() internal pure returns (Layout storage l) {
            bytes32 slot = STORAGE_SLOT;
            assembly {
                l.slot := slot
            }
        }
    }

    // SPDX-License-Identifier: UNLICENSED
    
    pragma solidity 0.8.26;
    
    /// @dev Types.sol defines the Token struct data types used in the TokenStorage layout
    
    /// @dev represents data related to $MINT token accruals (linked to a specific account)
    struct AccrualData {
        /// @dev last ratio an account had when one of their actions led to a change in the
        /// distributionSupply
        uint256 offset;
        /// @dev amount of tokens accrued as a result of distribution to token holders
        uint256 accruedTokens;
    }
    
    /// @dev struct representing the basis point values used to initialize the Token
    /// and get around stack too deep
    struct InitializationBasisPointValues {
        /// @dev fraction of attempt value going to distribution fund in basis points
        uint256 distributionFractionBP;
        /// @dev fraction of attempt value going to trades fund in basis points
        uint256 tradesFractionBP;
        /// @dev fraction of attempt value going to token backing fund in basis points
        uint256 tokenBackingFractionBP;
        /// @dev fraction of mint attempt value as fees for protocol in basis points
        uint256 protocolFeeBP;
    }

    // SPDX-License-Identifier: MIT
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Collection of common custom errors used in multiple contracts
     *
     * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
     * It is recommended to avoid relying on the error API for critical functionality.
     */
    library Errors {
        /**
         * @dev The ETH balance of the account is not enough to perform the operation.
         */
        error InsufficientBalance(uint256 balance, uint256 needed);
    
        /**
         * @dev A call to an address target failed. The target may have reverted.
         */
        error FailedCall();
    
        /**
         * @dev The deployment failed.
         */
        error FailedDeployment();
    
        /**
         * @dev A necessary precompile is missing.
         */
        error MissingPrecompile(address);
    }

    // SPDX-License-Identifier: MIT
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Library of standard hash functions.
     */
    library Hashes {
        /**
         * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
         *
         * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
         */
        function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
            return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
        }
    
        /**
         * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
         */
        function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
            assembly ("memory-safe") {
                mstore(0x00, a)
                mstore(0x20, b)
                value := keccak256(0x00, 0x40)
            }
        }
    }

    // SPDX-License-Identifier: MIT
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Helper library for emitting standardized panic codes.
     *
     * ```solidity
     * contract Example {
     *      using Panic for uint256;
     *
     *      // Use any of the declared internal constants
     *      function foo() { Panic.GENERIC.panic(); }
     *
     *      // Alternatively
     *      function foo() { Panic.panic(Panic.GENERIC); }
     * }
     * ```
     *
     * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
     */
    // slither-disable-next-line unused-state
    library Panic {
        /// @dev generic / unspecified error
        uint256 internal constant GENERIC = 0x00;
        /// @dev used by the assert() builtin
        uint256 internal constant ASSERT = 0x01;
        /// @dev arithmetic underflow or overflow
        uint256 internal constant UNDER_OVERFLOW = 0x11;
        /// @dev division or modulo by zero
        uint256 internal constant DIVISION_BY_ZERO = 0x12;
        /// @dev enum conversion error
        uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
        /// @dev invalid encoding in storage
        uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
        /// @dev empty array pop
        uint256 internal constant EMPTY_ARRAY_POP = 0x31;
        /// @dev array out of bounds access
        uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
        /// @dev resource error (too large allocation or too large array)
        uint256 internal constant RESOURCE_ERROR = 0x41;
        /// @dev calling invalid internal function
        uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
    
        /// @dev Reverts with a panic code. Recommended to use with
        /// the internal constants with predefined codes.
        function panic(uint256 code) internal pure {
            assembly ("memory-safe") {
                mstore(0x00, 0x4e487b71)
                mstore(0x20, code)
                revert(0x1c, 0x24)
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
    // This file was procedurally generated from scripts/generate/templates/SafeCast.js.
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
     * checks.
     *
     * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
     * easily result in undesired exploitation or bugs, since developers usually
     * assume that overflows raise errors. `SafeCast` restores this intuition by
     * reverting the transaction when such an operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeCast {
        /**
         * @dev Value doesn't fit in an uint of `bits` size.
         */
        error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
    
        /**
         * @dev An int value doesn't fit in an uint of `bits` size.
         */
        error SafeCastOverflowedIntToUint(int256 value);
    
        /**
         * @dev Value doesn't fit in an int of `bits` size.
         */
        error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
    
        /**
         * @dev An uint value doesn't fit in an int of `bits` size.
         */
        error SafeCastOverflowedUintToInt(uint256 value);
    
        /**
         * @dev Returns the downcasted uint248 from uint256, reverting on
         * overflow (when the input is greater than largest uint248).
         *
         * Counterpart to Solidity's `uint248` operator.
         *
         * Requirements:
         *
         * - input must fit into 248 bits
         */
        function toUint248(uint256 value) internal pure returns (uint248) {
            if (value > type(uint248).max) {
                revert SafeCastOverflowedUintDowncast(248, value);
            }
            return uint248(value);
        }
    
        /**
         * @dev Returns the downcasted uint240 from uint256, reverting on
         * overflow (when the input is greater than largest uint240).
         *
         * Counterpart to Solidity's `uint240` operator.
         *
         * Requirements:
         *
         * - input must fit into 240 bits
         */
        function toUint240(uint256 value) internal pure returns (uint240) {
            if (value > type(uint240).max) {
                revert SafeCastOverflowedUintDowncast(240, value);
            }
            return uint240(value);
        }
    
        /**
         * @dev Returns the downcasted uint232 from uint256, reverting on
         * overflow (when the input is greater than largest uint232).
         *
         * Counterpart to Solidity's `uint232` operator.
         *
         * Requirements:
         *
         * - input must fit into 232 bits
         */
        function toUint232(uint256 value) internal pure returns (uint232) {
            if (value > type(uint232).max) {
                revert SafeCastOverflowedUintDowncast(232, value);
            }
            return uint232(value);
        }
    
        /**
         * @dev Returns the downcasted uint224 from uint256, reverting on
         * overflow (when the input is greater than largest uint224).
         *
         * Counterpart to Solidity's `uint224` operator.
         *
         * Requirements:
         *
         * - input must fit into 224 bits
         */
        function toUint224(uint256 value) internal pure returns (uint224) {
            if (value > type(uint224).max) {
                revert SafeCastOverflowedUintDowncast(224, value);
            }
            return uint224(value);
        }
    
        /**
         * @dev Returns the downcasted uint216 from uint256, reverting on
         * overflow (when the input is greater than largest uint216).
         *
         * Counterpart to Solidity's `uint216` operator.
         *
         * Requirements:
         *
         * - input must fit into 216 bits
         */
        function toUint216(uint256 value) internal pure returns (uint216) {
            if (value > type(uint216).max) {
                revert SafeCastOverflowedUintDowncast(216, value);
            }
            return uint216(value);
        }
    
        /**
         * @dev Returns the downcasted uint208 from uint256, reverting on
         * overflow (when the input is greater than largest uint208).
         *
         * Counterpart to Solidity's `uint208` operator.
         *
         * Requirements:
         *
         * - input must fit into 208 bits
         */
        function toUint208(uint256 value) internal pure returns (uint208) {
            if (value > type(uint208).max) {
                revert SafeCastOverflowedUintDowncast(208, value);
            }
            return uint208(value);
        }
    
        /**
         * @dev Returns the downcasted uint200 from uint256, reverting on
         * overflow (when the input is greater than largest uint200).
         *
         * Counterpart to Solidity's `uint200` operator.
         *
         * Requirements:
         *
         * - input must fit into 200 bits
         */
        function toUint200(uint256 value) internal pure returns (uint200) {
            if (value > type(uint200).max) {
                revert SafeCastOverflowedUintDowncast(200, value);
            }
            return uint200(value);
        }
    
        /**
         * @dev Returns the downcasted uint192 from uint256, reverting on
         * overflow (when the input is greater than largest uint192).
         *
         * Counterpart to Solidity's `uint192` operator.
         *
         * Requirements:
         *
         * - input must fit into 192 bits
         */
        function toUint192(uint256 value) internal pure returns (uint192) {
            if (value > type(uint192).max) {
                revert SafeCastOverflowedUintDowncast(192, value);
            }
            return uint192(value);
        }
    
        /**
         * @dev Returns the downcasted uint184 from uint256, reverting on
         * overflow (when the input is greater than largest uint184).
         *
         * Counterpart to Solidity's `uint184` operator.
         *
         * Requirements:
         *
         * - input must fit into 184 bits
         */
        function toUint184(uint256 value) internal pure returns (uint184) {
            if (value > type(uint184).max) {
                revert SafeCastOverflowedUintDowncast(184, value);
            }
            return uint184(value);
        }
    
        /**
         * @dev Returns the downcasted uint176 from uint256, reverting on
         * overflow (when the input is greater than largest uint176).
         *
         * Counterpart to Solidity's `uint176` operator.
         *
         * Requirements:
         *
         * - input must fit into 176 bits
         */
        function toUint176(uint256 value) internal pure returns (uint176) {
            if (value > type(uint176).max) {
                revert SafeCastOverflowedUintDowncast(176, value);
            }
            return uint176(value);
        }
    
        /**
         * @dev Returns the downcasted uint168 from uint256, reverting on
         * overflow (when the input is greater than largest uint168).
         *
         * Counterpart to Solidity's `uint168` operator.
         *
         * Requirements:
         *
         * - input must fit into 168 bits
         */
        function toUint168(uint256 value) internal pure returns (uint168) {
            if (value > type(uint168).max) {
                revert SafeCastOverflowedUintDowncast(168, value);
            }
            return uint168(value);
        }
    
        /**
         * @dev Returns the downcasted uint160 from uint256, reverting on
         * overflow (when the input is greater than largest uint160).
         *
         * Counterpart to Solidity's `uint160` operator.
         *
         * Requirements:
         *
         * - input must fit into 160 bits
         */
        function toUint160(uint256 value) internal pure returns (uint160) {
            if (value > type(uint160).max) {
                revert SafeCastOverflowedUintDowncast(160, value);
            }
            return uint160(value);
        }
    
        /**
         * @dev Returns the downcasted uint152 from uint256, reverting on
         * overflow (when the input is greater than largest uint152).
         *
         * Counterpart to Solidity's `uint152` operator.
         *
         * Requirements:
         *
         * - input must fit into 152 bits
         */
        function toUint152(uint256 value) internal pure returns (uint152) {
            if (value > type(uint152).max) {
                revert SafeCastOverflowedUintDowncast(152, value);
            }
            return uint152(value);
        }
    
        /**
         * @dev Returns the downcasted uint144 from uint256, reverting on
         * overflow (when the input is greater than largest uint144).
         *
         * Counterpart to Solidity's `uint144` operator.
         *
         * Requirements:
         *
         * - input must fit into 144 bits
         */
        function toUint144(uint256 value) internal pure returns (uint144) {
            if (value > type(uint144).max) {
                revert SafeCastOverflowedUintDowncast(144, value);
            }
            return uint144(value);
        }
    
        /**
         * @dev Returns the downcasted uint136 from uint256, reverting on
         * overflow (when the input is greater than largest uint136).
         *
         * Counterpart to Solidity's `uint136` operator.
         *
         * Requirements:
         *
         * - input must fit into 136 bits
         */
        function toUint136(uint256 value) internal pure returns (uint136) {
            if (value > type(uint136).max) {
                revert SafeCastOverflowedUintDowncast(136, value);
            }
            return uint136(value);
        }
    
        /**
         * @dev Returns the downcasted uint128 from uint256, reverting on
         * overflow (when the input is greater than largest uint128).
         *
         * Counterpart to Solidity's `uint128` operator.
         *
         * Requirements:
         *
         * - input must fit into 128 bits
         */
        function toUint128(uint256 value) internal pure returns (uint128) {
            if (value > type(uint128).max) {
                revert SafeCastOverflowedUintDowncast(128, value);
            }
            return uint128(value);
        }
    
        /**
         * @dev Returns the downcasted uint120 from uint256, reverting on
         * overflow (when the input is greater than largest uint120).
         *
         * Counterpart to Solidity's `uint120` operator.
         *
         * Requirements:
         *
         * - input must fit into 120 bits
         */
        function toUint120(uint256 value) internal pure returns (uint120) {
            if (value > type(uint120).max) {
                revert SafeCastOverflowedUintDowncast(120, value);
            }
            return uint120(value);
        }
    
        /**
         * @dev Returns the downcasted uint112 from uint256, reverting on
         * overflow (when the input is greater than largest uint112).
         *
         * Counterpart to Solidity's `uint112` operator.
         *
         * Requirements:
         *
         * - input must fit into 112 bits
         */
        function toUint112(uint256 value) internal pure returns (uint112) {
            if (value > type(uint112).max) {
                revert SafeCastOverflowedUintDowncast(112, value);
            }
            return uint112(value);
        }
    
        /**
         * @dev Returns the downcasted uint104 from uint256, reverting on
         * overflow (when the input is greater than largest uint104).
         *
         * Counterpart to Solidity's `uint104` operator.
         *
         * Requirements:
         *
         * - input must fit into 104 bits
         */
        function toUint104(uint256 value) internal pure returns (uint104) {
            if (value > type(uint104).max) {
                revert SafeCastOverflowedUintDowncast(104, value);
            }
            return uint104(value);
        }
    
        /**
         * @dev Returns the downcasted uint96 from uint256, reverting on
         * overflow (when the input is greater than largest uint96).
         *
         * Counterpart to Solidity's `uint96` operator.
         *
         * Requirements:
         *
         * - input must fit into 96 bits
         */
        function toUint96(uint256 value) internal pure returns (uint96) {
            if (value > type(uint96).max) {
                revert SafeCastOverflowedUintDowncast(96, value);
            }
            return uint96(value);
        }
    
        /**
         * @dev Returns the downcasted uint88 from uint256, reverting on
         * overflow (when the input is greater than largest uint88).
         *
         * Counterpart to Solidity's `uint88` operator.
         *
         * Requirements:
         *
         * - input must fit into 88 bits
         */
        function toUint88(uint256 value) internal pure returns (uint88) {
            if (value > type(uint88).max) {
                revert SafeCastOverflowedUintDowncast(88, value);
            }
            return uint88(value);
        }
    
        /**
         * @dev Returns the downcasted uint80 from uint256, reverting on
         * overflow (when the input is greater than largest uint80).
         *
         * Counterpart to Solidity's `uint80` operator.
         *
         * Requirements:
         *
         * - input must fit into 80 bits
         */
        function toUint80(uint256 value) internal pure returns (uint80) {
            if (value > type(uint80).max) {
                revert SafeCastOverflowedUintDowncast(80, value);
            }
            return uint80(value);
        }
    
        /**
         * @dev Returns the downcasted uint72 from uint256, reverting on
         * overflow (when the input is greater than largest uint72).
         *
         * Counterpart to Solidity's `uint72` operator.
         *
         * Requirements:
         *
         * - input must fit into 72 bits
         */
        function toUint72(uint256 value) internal pure returns (uint72) {
            if (value > type(uint72).max) {
                revert SafeCastOverflowedUintDowncast(72, value);
            }
            return uint72(value);
        }
    
        /**
         * @dev Returns the downcasted uint64 from uint256, reverting on
         * overflow (when the input is greater than largest uint64).
         *
         * Counterpart to Solidity's `uint64` operator.
         *
         * Requirements:
         *
         * - input must fit into 64 bits
         */
        function toUint64(uint256 value) internal pure returns (uint64) {
            if (value > type(uint64).max) {
                revert SafeCastOverflowedUintDowncast(64, value);
            }
            return uint64(value);
        }
    
        /**
         * @dev Returns the downcasted uint56 from uint256, reverting on
         * overflow (when the input is greater than largest uint56).
         *
         * Counterpart to Solidity's `uint56` operator.
         *
         * Requirements:
         *
         * - input must fit into 56 bits
         */
        function toUint56(uint256 value) internal pure returns (uint56) {
            if (value > type(uint56).max) {
                revert SafeCastOverflowedUintDowncast(56, value);
            }
            return uint56(value);
        }
    
        /**
         * @dev Returns the downcasted uint48 from uint256, reverting on
         * overflow (when the input is greater than largest uint48).
         *
         * Counterpart to Solidity's `uint48` operator.
         *
         * Requirements:
         *
         * - input must fit into 48 bits
         */
        function toUint48(uint256 value) internal pure returns (uint48) {
            if (value > type(uint48).max) {
                revert SafeCastOverflowedUintDowncast(48, value);
            }
            return uint48(value);
        }
    
        /**
         * @dev Returns the downcasted uint40 from uint256, reverting on
         * overflow (when the input is greater than largest uint40).
         *
         * Counterpart to Solidity's `uint40` operator.
         *
         * Requirements:
         *
         * - input must fit into 40 bits
         */
        function toUint40(uint256 value) internal pure returns (uint40) {
            if (value > type(uint40).max) {
                revert SafeCastOverflowedUintDowncast(40, value);
            }
            return uint40(value);
        }
    
        /**
         * @dev Returns the downcasted uint32 from uint256, reverting on
         * overflow (when the input is greater than largest uint32).
         *
         * Counterpart to Solidity's `uint32` operator.
         *
         * Requirements:
         *
         * - input must fit into 32 bits
         */
        function toUint32(uint256 value) internal pure returns (uint32) {
            if (value > type(uint32).max) {
                revert SafeCastOverflowedUintDowncast(32, value);
            }
            return uint32(value);
        }
    
        /**
         * @dev Returns the downcasted uint24 from uint256, reverting on
         * overflow (when the input is greater than largest uint24).
         *
         * Counterpart to Solidity's `uint24` operator.
         *
         * Requirements:
         *
         * - input must fit into 24 bits
         */
        function toUint24(uint256 value) internal pure returns (uint24) {
            if (value > type(uint24).max) {
                revert SafeCastOverflowedUintDowncast(24, value);
            }
            return uint24(value);
        }
    
        /**
         * @dev Returns the downcasted uint16 from uint256, reverting on
         * overflow (when the input is greater than largest uint16).
         *
         * Counterpart to Solidity's `uint16` operator.
         *
         * Requirements:
         *
         * - input must fit into 16 bits
         */
        function toUint16(uint256 value) internal pure returns (uint16) {
            if (value > type(uint16).max) {
                revert SafeCastOverflowedUintDowncast(16, value);
            }
            return uint16(value);
        }
    
        /**
         * @dev Returns the downcasted uint8 from uint256, reverting on
         * overflow (when the input is greater than largest uint8).
         *
         * Counterpart to Solidity's `uint8` operator.
         *
         * Requirements:
         *
         * - input must fit into 8 bits
         */
        function toUint8(uint256 value) internal pure returns (uint8) {
            if (value > type(uint8).max) {
                revert SafeCastOverflowedUintDowncast(8, value);
            }
            return uint8(value);
        }
    
        /**
         * @dev Converts a signed int256 into an unsigned uint256.
         *
         * Requirements:
         *
         * - input must be greater than or equal to 0.
         */
        function toUint256(int256 value) internal pure returns (uint256) {
            if (value < 0) {
                revert SafeCastOverflowedIntToUint(value);
            }
            return uint256(value);
        }
    
        /**
         * @dev Returns the downcasted int248 from int256, reverting on
         * overflow (when the input is less than smallest int248 or
         * greater than largest int248).
         *
         * Counterpart to Solidity's `int248` operator.
         *
         * Requirements:
         *
         * - input must fit into 248 bits
         */
        function toInt248(int256 value) internal pure returns (int248 downcasted) {
            downcasted = int248(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(248, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int240 from int256, reverting on
         * overflow (when the input is less than smallest int240 or
         * greater than largest int240).
         *
         * Counterpart to Solidity's `int240` operator.
         *
         * Requirements:
         *
         * - input must fit into 240 bits
         */
        function toInt240(int256 value) internal pure returns (int240 downcasted) {
            downcasted = int240(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(240, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int232 from int256, reverting on
         * overflow (when the input is less than smallest int232 or
         * greater than largest int232).
         *
         * Counterpart to Solidity's `int232` operator.
         *
         * Requirements:
         *
         * - input must fit into 232 bits
         */
        function toInt232(int256 value) internal pure returns (int232 downcasted) {
            downcasted = int232(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(232, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int224 from int256, reverting on
         * overflow (when the input is less than smallest int224 or
         * greater than largest int224).
         *
         * Counterpart to Solidity's `int224` operator.
         *
         * Requirements:
         *
         * - input must fit into 224 bits
         */
        function toInt224(int256 value) internal pure returns (int224 downcasted) {
            downcasted = int224(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(224, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int216 from int256, reverting on
         * overflow (when the input is less than smallest int216 or
         * greater than largest int216).
         *
         * Counterpart to Solidity's `int216` operator.
         *
         * Requirements:
         *
         * - input must fit into 216 bits
         */
        function toInt216(int256 value) internal pure returns (int216 downcasted) {
            downcasted = int216(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(216, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int208 from int256, reverting on
         * overflow (when the input is less than smallest int208 or
         * greater than largest int208).
         *
         * Counterpart to Solidity's `int208` operator.
         *
         * Requirements:
         *
         * - input must fit into 208 bits
         */
        function toInt208(int256 value) internal pure returns (int208 downcasted) {
            downcasted = int208(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(208, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int200 from int256, reverting on
         * overflow (when the input is less than smallest int200 or
         * greater than largest int200).
         *
         * Counterpart to Solidity's `int200` operator.
         *
         * Requirements:
         *
         * - input must fit into 200 bits
         */
        function toInt200(int256 value) internal pure returns (int200 downcasted) {
            downcasted = int200(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(200, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int192 from int256, reverting on
         * overflow (when the input is less than smallest int192 or
         * greater than largest int192).
         *
         * Counterpart to Solidity's `int192` operator.
         *
         * Requirements:
         *
         * - input must fit into 192 bits
         */
        function toInt192(int256 value) internal pure returns (int192 downcasted) {
            downcasted = int192(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(192, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int184 from int256, reverting on
         * overflow (when the input is less than smallest int184 or
         * greater than largest int184).
         *
         * Counterpart to Solidity's `int184` operator.
         *
         * Requirements:
         *
         * - input must fit into 184 bits
         */
        function toInt184(int256 value) internal pure returns (int184 downcasted) {
            downcasted = int184(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(184, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int176 from int256, reverting on
         * overflow (when the input is less than smallest int176 or
         * greater than largest int176).
         *
         * Counterpart to Solidity's `int176` operator.
         *
         * Requirements:
         *
         * - input must fit into 176 bits
         */
        function toInt176(int256 value) internal pure returns (int176 downcasted) {
            downcasted = int176(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(176, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int168 from int256, reverting on
         * overflow (when the input is less than smallest int168 or
         * greater than largest int168).
         *
         * Counterpart to Solidity's `int168` operator.
         *
         * Requirements:
         *
         * - input must fit into 168 bits
         */
        function toInt168(int256 value) internal pure returns (int168 downcasted) {
            downcasted = int168(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(168, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int160 from int256, reverting on
         * overflow (when the input is less than smallest int160 or
         * greater than largest int160).
         *
         * Counterpart to Solidity's `int160` operator.
         *
         * Requirements:
         *
         * - input must fit into 160 bits
         */
        function toInt160(int256 value) internal pure returns (int160 downcasted) {
            downcasted = int160(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(160, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int152 from int256, reverting on
         * overflow (when the input is less than smallest int152 or
         * greater than largest int152).
         *
         * Counterpart to Solidity's `int152` operator.
         *
         * Requirements:
         *
         * - input must fit into 152 bits
         */
        function toInt152(int256 value) internal pure returns (int152 downcasted) {
            downcasted = int152(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(152, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int144 from int256, reverting on
         * overflow (when the input is less than smallest int144 or
         * greater than largest int144).
         *
         * Counterpart to Solidity's `int144` operator.
         *
         * Requirements:
         *
         * - input must fit into 144 bits
         */
        function toInt144(int256 value) internal pure returns (int144 downcasted) {
            downcasted = int144(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(144, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int136 from int256, reverting on
         * overflow (when the input is less than smallest int136 or
         * greater than largest int136).
         *
         * Counterpart to Solidity's `int136` operator.
         *
         * Requirements:
         *
         * - input must fit into 136 bits
         */
        function toInt136(int256 value) internal pure returns (int136 downcasted) {
            downcasted = int136(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(136, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int128 from int256, reverting on
         * overflow (when the input is less than smallest int128 or
         * greater than largest int128).
         *
         * Counterpart to Solidity's `int128` operator.
         *
         * Requirements:
         *
         * - input must fit into 128 bits
         */
        function toInt128(int256 value) internal pure returns (int128 downcasted) {
            downcasted = int128(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(128, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int120 from int256, reverting on
         * overflow (when the input is less than smallest int120 or
         * greater than largest int120).
         *
         * Counterpart to Solidity's `int120` operator.
         *
         * Requirements:
         *
         * - input must fit into 120 bits
         */
        function toInt120(int256 value) internal pure returns (int120 downcasted) {
            downcasted = int120(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(120, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int112 from int256, reverting on
         * overflow (when the input is less than smallest int112 or
         * greater than largest int112).
         *
         * Counterpart to Solidity's `int112` operator.
         *
         * Requirements:
         *
         * - input must fit into 112 bits
         */
        function toInt112(int256 value) internal pure returns (int112 downcasted) {
            downcasted = int112(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(112, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int104 from int256, reverting on
         * overflow (when the input is less than smallest int104 or
         * greater than largest int104).
         *
         * Counterpart to Solidity's `int104` operator.
         *
         * Requirements:
         *
         * - input must fit into 104 bits
         */
        function toInt104(int256 value) internal pure returns (int104 downcasted) {
            downcasted = int104(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(104, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int96 from int256, reverting on
         * overflow (when the input is less than smallest int96 or
         * greater than largest int96).
         *
         * Counterpart to Solidity's `int96` operator.
         *
         * Requirements:
         *
         * - input must fit into 96 bits
         */
        function toInt96(int256 value) internal pure returns (int96 downcasted) {
            downcasted = int96(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(96, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int88 from int256, reverting on
         * overflow (when the input is less than smallest int88 or
         * greater than largest int88).
         *
         * Counterpart to Solidity's `int88` operator.
         *
         * Requirements:
         *
         * - input must fit into 88 bits
         */
        function toInt88(int256 value) internal pure returns (int88 downcasted) {
            downcasted = int88(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(88, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int80 from int256, reverting on
         * overflow (when the input is less than smallest int80 or
         * greater than largest int80).
         *
         * Counterpart to Solidity's `int80` operator.
         *
         * Requirements:
         *
         * - input must fit into 80 bits
         */
        function toInt80(int256 value) internal pure returns (int80 downcasted) {
            downcasted = int80(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(80, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int72 from int256, reverting on
         * overflow (when the input is less than smallest int72 or
         * greater than largest int72).
         *
         * Counterpart to Solidity's `int72` operator.
         *
         * Requirements:
         *
         * - input must fit into 72 bits
         */
        function toInt72(int256 value) internal pure returns (int72 downcasted) {
            downcasted = int72(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(72, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int64 from int256, reverting on
         * overflow (when the input is less than smallest int64 or
         * greater than largest int64).
         *
         * Counterpart to Solidity's `int64` operator.
         *
         * Requirements:
         *
         * - input must fit into 64 bits
         */
        function toInt64(int256 value) internal pure returns (int64 downcasted) {
            downcasted = int64(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(64, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int56 from int256, reverting on
         * overflow (when the input is less than smallest int56 or
         * greater than largest int56).
         *
         * Counterpart to Solidity's `int56` operator.
         *
         * Requirements:
         *
         * - input must fit into 56 bits
         */
        function toInt56(int256 value) internal pure returns (int56 downcasted) {
            downcasted = int56(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(56, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int48 from int256, reverting on
         * overflow (when the input is less than smallest int48 or
         * greater than largest int48).
         *
         * Counterpart to Solidity's `int48` operator.
         *
         * Requirements:
         *
         * - input must fit into 48 bits
         */
        function toInt48(int256 value) internal pure returns (int48 downcasted) {
            downcasted = int48(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(48, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int40 from int256, reverting on
         * overflow (when the input is less than smallest int40 or
         * greater than largest int40).
         *
         * Counterpart to Solidity's `int40` operator.
         *
         * Requirements:
         *
         * - input must fit into 40 bits
         */
        function toInt40(int256 value) internal pure returns (int40 downcasted) {
            downcasted = int40(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(40, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int32 from int256, reverting on
         * overflow (when the input is less than smallest int32 or
         * greater than largest int32).
         *
         * Counterpart to Solidity's `int32` operator.
         *
         * Requirements:
         *
         * - input must fit into 32 bits
         */
        function toInt32(int256 value) internal pure returns (int32 downcasted) {
            downcasted = int32(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(32, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int24 from int256, reverting on
         * overflow (when the input is less than smallest int24 or
         * greater than largest int24).
         *
         * Counterpart to Solidity's `int24` operator.
         *
         * Requirements:
         *
         * - input must fit into 24 bits
         */
        function toInt24(int256 value) internal pure returns (int24 downcasted) {
            downcasted = int24(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(24, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int16 from int256, reverting on
         * overflow (when the input is less than smallest int16 or
         * greater than largest int16).
         *
         * Counterpart to Solidity's `int16` operator.
         *
         * Requirements:
         *
         * - input must fit into 16 bits
         */
        function toInt16(int256 value) internal pure returns (int16 downcasted) {
            downcasted = int16(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(16, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int8 from int256, reverting on
         * overflow (when the input is less than smallest int8 or
         * greater than largest int8).
         *
         * Counterpart to Solidity's `int8` operator.
         *
         * Requirements:
         *
         * - input must fit into 8 bits
         */
        function toInt8(int256 value) internal pure returns (int8 downcasted) {
            downcasted = int8(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(8, value);
            }
        }
    
        /**
         * @dev Converts an unsigned uint256 into a signed int256.
         *
         * Requirements:
         *
         * - input must be less than or equal to maxInt256.
         */
        function toInt256(uint256 value) internal pure returns (int256) {
            // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
            if (value > uint256(type(int256).max)) {
                revert SafeCastOverflowedUintToInt(value);
            }
            return int256(value);
        }
    
        /**
         * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
         */
        function toUint(bool b) internal pure returns (uint256 u) {
            assembly ("memory-safe") {
                u := iszero(iszero(b))
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev External interface of AccessControl declared to support ERC-165 detection.
     */
    interface IAccessControl {
        /**
         * @dev The `account` is missing a role.
         */
        error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
    
        /**
         * @dev The caller of a function is not the expected one.
         *
         * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
         */
        error AccessControlBadConfirmation();
    
        /**
         * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
         *
         * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
         * {RoleAdminChanged} not being emitted signaling this.
         */
        event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
    
        /**
         * @dev Emitted when `account` is granted `role`.
         *
         * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
         * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
         */
        event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
    
        /**
         * @dev Emitted when `account` is revoked `role`.
         *
         * `sender` is the account that originated the contract call:
         *   - if using `revokeRole`, it is the admin role bearer
         *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
         */
        event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
    
        /**
         * @dev Returns `true` if `account` has been granted `role`.
         */
        function hasRole(bytes32 role, address account) external view returns (bool);
    
        /**
         * @dev Returns the admin role that controls `role`. See {grantRole} and
         * {revokeRole}.
         *
         * To change a role's admin, use {AccessControl-_setRoleAdmin}.
         */
        function getRoleAdmin(bytes32 role) external view returns (bytes32);
    
        /**
         * @dev Grants `role` to `account`.
         *
         * If `account` had not been already granted `role`, emits a {RoleGranted}
         * event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         */
        function grantRole(bytes32 role, address account) external;
    
        /**
         * @dev Revokes `role` from `account`.
         *
         * If `account` had been granted `role`, emits a {RoleRevoked} event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         */
        function revokeRole(bytes32 role, address account) external;
    
        /**
         * @dev Revokes `role` from the calling account.
         *
         * Roles are often managed via {grantRole} and {revokeRole}: this function's
         * purpose is to provide a mechanism for accounts to lose their privileges
         * if they are compromised (such as when a trusted device is misplaced).
         *
         * If the calling account had been granted `role`, emits a {RoleRevoked}
         * event.
         *
         * Requirements:
         *
         * - the caller must be `callerConfirmation`.
         */
        function renounceRole(bytes32 role, address callerConfirmation) external;
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
    
    pragma solidity ^0.8.20;
    import {Initializable} from "../proxy/utils/Initializable.sol";
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract ContextUpgradeable is Initializable {
        function __Context_init() internal onlyInitializing {
        }
    
        function __Context_init_unchained() internal onlyInitializing {
        }
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    
        function _contextSuffixLength() internal view virtual returns (uint256) {
            return 0;
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
    import {Initializable} from "../../proxy/utils/Initializable.sol";
    
    /**
     * @dev Implementation of the {IERC165} interface.
     *
     * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
     * for the additional interface id that will be supported. For example:
     *
     * ```solidity
     * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
     *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
     * }
     * ```
     */
    abstract contract ERC165Upgradeable is Initializable, IERC165 {
        function __ERC165_init() internal onlyInitializing {
        }
    
        function __ERC165_init_unchained() internal onlyInitializing {
        }
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
            return interfaceId == type(IERC165).interfaceId;
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
     * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
     * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
     * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
     *
     * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
     * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
     * case an upgrade adds a module that needs to be initialized.
     *
     * For example:
     *
     * [.hljs-theme-light.nopadding]
     * ```solidity
     * contract MyToken is ERC20Upgradeable {
     *     function initialize() initializer public {
     *         __ERC20_init("MyToken", "MTK");
     *     }
     * }
     *
     * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
     *     function initializeV2() reinitializer(2) public {
     *         __ERC20Permit_init("MyToken");
     *     }
     * }
     * ```
     *
     * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
     * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
     *
     * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
     * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
     *
     * [CAUTION]
     * ====
     * Avoid leaving a contract uninitialized.
     *
     * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
     * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
     * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * /// @custom:oz-upgrades-unsafe-allow constructor
     * constructor() {
     *     _disableInitializers();
     * }
     * ```
     * ====
     */
    abstract contract Initializable {
        /**
         * @dev Storage of the initializable contract.
         *
         * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
         * when using with upgradeable contracts.
         *
         * @custom:storage-location erc7201:openzeppelin.storage.Initializable
         */
        struct InitializableStorage {
            /**
             * @dev Indicates that the contract has been initialized.
             */
            uint64 _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool _initializing;
        }
    
        // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
        bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
    
        /**
         * @dev The contract is already initialized.
         */
        error InvalidInitialization();
    
        /**
         * @dev The contract is not initializing.
         */
        error NotInitializing();
    
        /**
         * @dev Triggered when the contract has been initialized or reinitialized.
         */
        event Initialized(uint64 version);
    
        /**
         * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
         * `onlyInitializing` functions can be used to initialize parent contracts.
         *
         * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
         * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
         * production.
         *
         * Emits an {Initialized} event.
         */
        modifier initializer() {
            // solhint-disable-next-line var-name-mixedcase
            InitializableStorage storage $ = _getInitializableStorage();
    
            // Cache values to avoid duplicated sloads
            bool isTopLevelCall = !$._initializing;
            uint64 initialized = $._initialized;
    
            // Allowed calls:
            // - initialSetup: the contract is not in the initializing state and no previous version was
            //                 initialized
            // - construction: the contract is initialized at version 1 (no reininitialization) and the
            //                 current contract is just being deployed
            bool initialSetup = initialized == 0 && isTopLevelCall;
            bool construction = initialized == 1 && address(this).code.length == 0;
    
            if (!initialSetup && !construction) {
                revert InvalidInitialization();
            }
            $._initialized = 1;
            if (isTopLevelCall) {
                $._initializing = true;
            }
            _;
            if (isTopLevelCall) {
                $._initializing = false;
                emit Initialized(1);
            }
        }
    
        /**
         * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
         * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
         * used to initialize parent contracts.
         *
         * A reinitializer may be used after the original initialization step. This is essential to configure modules that
         * are added through upgrades and that require initialization.
         *
         * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
         * cannot be nested. If one is invoked in the context of another, execution will revert.
         *
         * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
         * a contract, executing them in the right order is up to the developer or operator.
         *
         * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
         *
         * Emits an {Initialized} event.
         */
        modifier reinitializer(uint64 version) {
            // solhint-disable-next-line var-name-mixedcase
            InitializableStorage storage $ = _getInitializableStorage();
    
            if ($._initializing || $._initialized >= version) {
                revert InvalidInitialization();
            }
            $._initialized = version;
            $._initializing = true;
            _;
            $._initializing = false;
            emit Initialized(version);
        }
    
        /**
         * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
         * {initializer} and {reinitializer} modifiers, directly or indirectly.
         */
        modifier onlyInitializing() {
            _checkInitializing();
            _;
        }
    
        /**
         * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
         */
        function _checkInitializing() internal view virtual {
            if (!_isInitializing()) {
                revert NotInitializing();
            }
        }
    
        /**
         * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
         * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
         * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
         * through proxies.
         *
         * Emits an {Initialized} event the first time it is successfully executed.
         */
        function _disableInitializers() internal virtual {
            // solhint-disable-next-line var-name-mixedcase
            InitializableStorage storage $ = _getInitializableStorage();
    
            if ($._initializing) {
                revert InvalidInitialization();
            }
            if ($._initialized != type(uint64).max) {
                $._initialized = type(uint64).max;
                emit Initialized(type(uint64).max);
            }
        }
    
        /**
         * @dev Returns the highest version that has been initialized. See {reinitializer}.
         */
        function _getInitializedVersion() internal view returns (uint64) {
            return _getInitializableStorage()._initialized;
        }
    
        /**
         * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
         */
        function _isInitializing() internal view returns (bool) {
            return _getInitializableStorage()._initializing;
        }
    
        /**
         * @dev Returns a pointer to the storage namespace.
         */
        // solhint-disable-next-line var-name-mixedcase
        function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
            assembly {
                $.slot := INITIALIZABLE_STORAGE
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC1822.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev ERC-1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
     * proxy whose upgrades are fully controlled by the current implementation.
     */
    interface IERC1822Proxiable {
        /**
         * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
         * address.
         *
         * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
         * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
         * function revert if invoked through a proxy.
         */
        function proxiableUUID() external view returns (bytes32);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol)
    
    pragma solidity ^0.8.21;
    
    import {IBeacon} from "../beacon/IBeacon.sol";
    import {IERC1967} from "../../interfaces/IERC1967.sol";
    import {Address} from "../../utils/Address.sol";
    import {StorageSlot} from "../../utils/StorageSlot.sol";
    
    /**
     * @dev This library provides getters and event emitting update functions for
     * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
     */
    library ERC1967Utils {
        /**
         * @dev Storage slot with the address of the current implementation.
         * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
         */
        // solhint-disable-next-line private-vars-leading-underscore
        bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
    
        /**
         * @dev The `implementation` of the proxy is invalid.
         */
        error ERC1967InvalidImplementation(address implementation);
    
        /**
         * @dev The `admin` of the proxy is invalid.
         */
        error ERC1967InvalidAdmin(address admin);
    
        /**
         * @dev The `beacon` of the proxy is invalid.
         */
        error ERC1967InvalidBeacon(address beacon);
    
        /**
         * @dev An upgrade function sees `msg.value > 0` that may be lost.
         */
        error ERC1967NonPayable();
    
        /**
         * @dev Returns the current implementation address.
         */
        function getImplementation() internal view returns (address) {
            return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
        }
    
        /**
         * @dev Stores a new address in the ERC-1967 implementation slot.
         */
        function _setImplementation(address newImplementation) private {
            if (newImplementation.code.length == 0) {
                revert ERC1967InvalidImplementation(newImplementation);
            }
            StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
        }
    
        /**
         * @dev Performs implementation upgrade with additional setup call if data is nonempty.
         * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
         * to avoid stuck value in the contract.
         *
         * Emits an {IERC1967-Upgraded} event.
         */
        function upgradeToAndCall(address newImplementation, bytes memory data) internal {
            _setImplementation(newImplementation);
            emit IERC1967.Upgraded(newImplementation);
    
            if (data.length > 0) {
                Address.functionDelegateCall(newImplementation, data);
            } else {
                _checkNonPayable();
            }
        }
    
        /**
         * @dev Storage slot with the admin of the contract.
         * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
         */
        // solhint-disable-next-line private-vars-leading-underscore
        bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
    
        /**
         * @dev Returns the current admin.
         *
         * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
         * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
         * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
         */
        function getAdmin() internal view returns (address) {
            return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
        }
    
        /**
         * @dev Stores a new address in the ERC-1967 admin slot.
         */
        function _setAdmin(address newAdmin) private {
            if (newAdmin == address(0)) {
                revert ERC1967InvalidAdmin(address(0));
            }
            StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
        }
    
        /**
         * @dev Changes the admin of the proxy.
         *
         * Emits an {IERC1967-AdminChanged} event.
         */
        function changeAdmin(address newAdmin) internal {
            emit IERC1967.AdminChanged(getAdmin(), newAdmin);
            _setAdmin(newAdmin);
        }
    
        /**
         * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
         * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
         */
        // solhint-disable-next-line private-vars-leading-underscore
        bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
    
        /**
         * @dev Returns the current beacon.
         */
        function getBeacon() internal view returns (address) {
            return StorageSlot.getAddressSlot(BEACON_SLOT).value;
        }
    
        /**
         * @dev Stores a new beacon in the ERC-1967 beacon slot.
         */
        function _setBeacon(address newBeacon) private {
            if (newBeacon.code.length == 0) {
                revert ERC1967InvalidBeacon(newBeacon);
            }
    
            StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;
    
            address beaconImplementation = IBeacon(newBeacon).implementation();
            if (beaconImplementation.code.length == 0) {
                revert ERC1967InvalidImplementation(beaconImplementation);
            }
        }
    
        /**
         * @dev Change the beacon and trigger a setup call if data is nonempty.
         * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
         * to avoid stuck value in the contract.
         *
         * Emits an {IERC1967-BeaconUpgraded} event.
         *
         * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
         * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
         * efficiency.
         */
        function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
            _setBeacon(newBeacon);
            emit IERC1967.BeaconUpgraded(newBeacon);
    
            if (data.length > 0) {
                Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
            } else {
                _checkNonPayable();
            }
        }
    
        /**
         * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
         * if an upgrade doesn't perform an initialization call.
         */
        function _checkNonPayable() private {
            if (msg.value > 0) {
                revert ERC1967NonPayable();
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Interface of the ERC-20 standard as defined in the ERC.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    
        /**
         * @dev Returns the value of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the value of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves a `value` amount of tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 value) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
         * caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 value) external returns (bool);
    
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to` using the
         * allowance mechanism. `value` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 value) external returns (bool);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC20} from "../IERC20.sol";
    
    /**
     * @dev Interface for the optional metadata functions from the ERC-20 standard.
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
    
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
    
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
    pragma solidity ^0.8.20;
    
    /**
     * @dev Standard ERC-20 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
     */
    interface IERC20Errors {
        /**
         * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param balance Current balance for the interacting account.
         * @param needed Minimum amount required to perform a transfer.
         */
        error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC20InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC20InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
         * @param spender Address that may be allowed to operate on tokens without being their owner.
         * @param allowance Amount of tokens a `spender` is allowed to operate with.
         * @param needed Minimum amount required to perform a transfer.
         */
        error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC20InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
         * @param spender Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC20InvalidSpender(address spender);
    }
    
    /**
     * @dev Standard ERC-721 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
     */
    interface IERC721Errors {
        /**
         * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
         * Used in balance queries.
         * @param owner Address of the current owner of a token.
         */
        error ERC721InvalidOwner(address owner);
    
        /**
         * @dev Indicates a `tokenId` whose `owner` is the zero address.
         * @param tokenId Identifier number of a token.
         */
        error ERC721NonexistentToken(uint256 tokenId);
    
        /**
         * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param tokenId Identifier number of a token.
         * @param owner Address of the current owner of a token.
         */
        error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC721InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC721InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         * @param tokenId Identifier number of a token.
         */
        error ERC721InsufficientApproval(address operator, uint256 tokenId);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC721InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC721InvalidOperator(address operator);
    }
    
    /**
     * @dev Standard ERC-1155 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
     */
    interface IERC1155Errors {
        /**
         * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param balance Current balance for the interacting account.
         * @param needed Minimum amount required to perform a transfer.
         * @param tokenId Identifier number of a token.
         */
        error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC1155InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC1155InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         * @param owner Address of the current owner of a token.
         */
        error ERC1155MissingApprovalForAll(address operator, address owner);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC1155InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC1155InvalidOperator(address operator);
    
        /**
         * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
         * Used in batch transfers.
         * @param idsLength Length of the array of token identifiers
         * @param valuesLength Length of the array of token amounts
         */
        error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Interface of the ERC-165 standard, as defined in the
     * https://eips.ethereum.org/EIPS/eip-165[ERC].
     *
     * Implementers can declare support of contract interfaces, which can then be
     * queried by others ({ERC165Checker}).
     *
     * For an implementation, see {ERC165}.
     */
    interface IERC165 {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev This is the interface that {BeaconProxy} expects of its beacon.
     */
    interface IBeacon {
        /**
         * @dev Must return an address that can be used as a delegate call target.
         *
         * {UpgradeableBeacon} will check that this address is a contract.
         */
        function implementation() external view returns (address);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
     */
    interface IERC1967 {
        /**
         * @dev Emitted when the implementation is upgraded.
         */
        event Upgraded(address indexed implementation);
    
        /**
         * @dev Emitted when the admin account has changed.
         */
        event AdminChanged(address previousAdmin, address newAdmin);
    
        /**
         * @dev Emitted when the beacon is changed.
         */
        event BeaconUpgraded(address indexed beacon);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
    // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
    
    pragma solidity ^0.8.24;
    
    /**
     * @dev Library for reading and writing primitive types to specific storage slots.
     *
     * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
     * This library helps with reading and writing to such slots without the need for inline assembly.
     *
     * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
     *
     * Example usage to set ERC-1967 implementation slot:
     * ```solidity
     * contract ERC1967 {
     *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
     *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
     *
     *     function _getImplementation() internal view returns (address) {
     *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
     *     }
     *
     *     function _setImplementation(address newImplementation) internal {
     *         require(newImplementation.code.length > 0);
     *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
     *     }
     * }
     * ```
     *
     * Since version 5.1, this library also support writing and reading value types to and from transient storage.
     *
     *  * Example using transient storage:
     * ```solidity
     * contract Lock {
     *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
     *     bytes32 internal constant _LOCK_SLOT = 0xf4678858b2b588224636b8522b729e7722d32fc491da849ed75b3fdf3c84f542;
     *
     *     modifier locked() {
     *         require(!_LOCK_SLOT.asBoolean().tload());
     *
     *         _LOCK_SLOT.asBoolean().tstore(true);
     *         _;
     *         _LOCK_SLOT.asBoolean().tstore(false);
     *     }
     * }
     * ```
     *
     * TIP: Consider using this library along with {SlotDerivation}.
     */
    library StorageSlot {
        struct AddressSlot {
            address value;
        }
    
        struct BooleanSlot {
            bool value;
        }
    
        struct Bytes32Slot {
            bytes32 value;
        }
    
        struct Uint256Slot {
            uint256 value;
        }
    
        struct Int256Slot {
            int256 value;
        }
    
        struct StringSlot {
            string value;
        }
    
        struct BytesSlot {
            bytes value;
        }
    
        /**
         * @dev Returns an `AddressSlot` with member `value` located at `slot`.
         */
        function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
            assembly ("memory-safe") {
                r.slot := slot
            }
        }
    
        /**
         * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
         */
        function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
            assembly ("memory-safe") {
                r.slot := slot
            }
        }
    
        /**
         * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
         */
        function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
            assembly ("memory-safe") {
                r.slot := slot
            }
        }
    
        /**
         * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
         */
        function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
            assembly ("memory-safe") {
                r.slot := slot
            }
        }
    
        /**
         * @dev Returns a `Int256Slot` with member `value` located at `slot`.
         */
        function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
            assembly ("memory-safe") {
                r.slot := slot
            }
        }
    
        /**
         * @dev Returns a `StringSlot` with member `value` located at `slot`.
         */
        function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
            assembly ("memory-safe") {
                r.slot := slot
            }
        }
    
        /**
         * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
         */
        function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
            assembly ("memory-safe") {
                r.slot := store.slot
            }
        }
    
        /**
         * @dev Returns a `BytesSlot` with member `value` located at `slot`.
         */
        function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
            assembly ("memory-safe") {
                r.slot := slot
            }
        }
    
        /**
         * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
         */
        function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
            assembly ("memory-safe") {
                r.slot := store.slot
            }
        }
    
        /**
         * @dev UDVT that represent a slot holding a address.
         */
        type AddressSlotType is bytes32;
    
        /**
         * @dev Cast an arbitrary slot to a AddressSlotType.
         */
        function asAddress(bytes32 slot) internal pure returns (AddressSlotType) {
            return AddressSlotType.wrap(slot);
        }
    
        /**
         * @dev UDVT that represent a slot holding a bool.
         */
        type BooleanSlotType is bytes32;
    
        /**
         * @dev Cast an arbitrary slot to a BooleanSlotType.
         */
        function asBoolean(bytes32 slot) internal pure returns (BooleanSlotType) {
            return BooleanSlotType.wrap(slot);
        }
    
        /**
         * @dev UDVT that represent a slot holding a bytes32.
         */
        type Bytes32SlotType is bytes32;
    
        /**
         * @dev Cast an arbitrary slot to a Bytes32SlotType.
         */
        function asBytes32(bytes32 slot) internal pure returns (Bytes32SlotType) {
            return Bytes32SlotType.wrap(slot);
        }
    
        /**
         * @dev UDVT that represent a slot holding a uint256.
         */
        type Uint256SlotType is bytes32;
    
        /**
         * @dev Cast an arbitrary slot to a Uint256SlotType.
         */
        function asUint256(bytes32 slot) internal pure returns (Uint256SlotType) {
            return Uint256SlotType.wrap(slot);
        }
    
        /**
         * @dev UDVT that represent a slot holding a int256.
         */
        type Int256SlotType is bytes32;
    
        /**
         * @dev Cast an arbitrary slot to a Int256SlotType.
         */
        function asInt256(bytes32 slot) internal pure returns (Int256SlotType) {
            return Int256SlotType.wrap(slot);
        }
    
        /**
         * @dev Load the value held at location `slot` in transient storage.
         */
        function tload(AddressSlotType slot) internal view returns (address value) {
            assembly ("memory-safe") {
                value := tload(slot)
            }
        }
    
        /**
         * @dev Store `value` at location `slot` in transient storage.
         */
        function tstore(AddressSlotType slot, address value) internal {
            assembly ("memory-safe") {
                tstore(slot, value)
            }
        }
    
        /**
         * @dev Load the value held at location `slot` in transient storage.
         */
        function tload(BooleanSlotType slot) internal view returns (bool value) {
            assembly ("memory-safe") {
                value := tload(slot)
            }
        }
    
        /**
         * @dev Store `value` at location `slot` in transient storage.
         */
        function tstore(BooleanSlotType slot, bool value) internal {
            assembly ("memory-safe") {
                tstore(slot, value)
            }
        }
    
        /**
         * @dev Load the value held at location `slot` in transient storage.
         */
        function tload(Bytes32SlotType slot) internal view returns (bytes32 value) {
            assembly ("memory-safe") {
                value := tload(slot)
            }
        }
    
        /**
         * @dev Store `value` at location `slot` in transient storage.
         */
        function tstore(Bytes32SlotType slot, bytes32 value) internal {
            assembly ("memory-safe") {
                tstore(slot, value)
            }
        }
    
        /**
         * @dev Load the value held at location `slot` in transient storage.
         */
        function tload(Uint256SlotType slot) internal view returns (uint256 value) {
            assembly ("memory-safe") {
                value := tload(slot)
            }
        }
    
        /**
         * @dev Store `value` at location `slot` in transient storage.
         */
        function tstore(Uint256SlotType slot, uint256 value) internal {
            assembly ("memory-safe") {
                tstore(slot, value)
            }
        }
    
        /**
         * @dev Load the value held at location `slot` in transient storage.
         */
        function tload(Int256SlotType slot) internal view returns (int256 value) {
            assembly ("memory-safe") {
                value := tload(slot)
            }
        }
    
        /**
         * @dev Store `value` at location `slot` in transient storage.
         */
        function tstore(Int256SlotType slot, int256 value) internal {
            assembly ("memory-safe") {
                tstore(slot, value)
            }
        }
    }

    Please enter a contract address above to load the contract details and source code.

    Context size (optional):