Contract Name:
AbstractVoting
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;
import {IVoteGovernor} from "./interfaces/IVoteGovernor.sol";
import {IAppRegistry} from "./interfaces/IAppRegistry.sol";
import {OwnableRoles} from "@solady-0.0.232/src/auth/OwnableRoles.sol";
import {EnumerableSetLib} from "@solady-0.0.232/src/utils/EnumerableSetLib.sol";
contract AbstractVoting is OwnableRoles {
using EnumerableSetLib for EnumerableSetLib.Uint256Set;
struct Schedule {
uint40 startTime;
uint40 epochDuration;
uint40 epochsCompleted;
uint96 voteCost;
}
error InvalidValue();
error InvalidSchedule();
error VotingNotActive();
error AppNotActive();
error AlreadyVotedFor(uint256 appId);
error UsedAllVotes();
error WithdrawFailed();
event ScheduleInitialized(uint256 startTime, uint256 epochDuration, uint256 epochsCompleted);
event Voted(address indexed voter, uint256 indexed appId, uint256 indexed epoch);
event VoteGovernorUpdated(address indexed newGovernor);
event AppRegistryUpdated(address indexed newAppRegistry);
uint256 public constant MANAGER_ROLE = _ROLE_0;
IAppRegistry public appRegistry;
IVoteGovernor public voteGovernor;
Schedule public currentSchedule;
Schedule public nextSchedule;
mapping(uint256 epochId => mapping(uint256 appId => uint256 votes)) private appVotesByEpoch;
mapping(address user => mapping(uint256 epochId => EnumerableSetLib.Uint256Set)) private userVotes;
mapping(address user => uint256) public userVoteSpend;
constructor(address owner, IAppRegistry _appRegistry, IVoteGovernor _voteGovernor) {
_initializeOwner(owner);
_grantRoles(owner, MANAGER_ROLE);
appRegistry = _appRegistry;
voteGovernor = _voteGovernor;
emit VoteGovernorUpdated(address(_voteGovernor));
}
function voteForApp(uint256 appId) external payable {
Schedule memory schedule = _getActiveSchedule();
if (msg.value != schedule.voteCost) {
revert InvalidValue();
}
uint256 epoch = _getCurrentEpoch(schedule);
if (epoch == 0) {
revert VotingNotActive();
}
if (!appRegistry.appEnabled(appId)) {
revert AppNotActive();
}
EnumerableSetLib.Uint256Set storage userVotedApps = userVotes[msg.sender][epoch];
if (_remainingVotes(msg.sender, epoch) == 0) {
revert UsedAllVotes();
}
if (userVotedApps.contains(appId)) {
revert AlreadyVotedFor(appId);
}
unchecked {
appVotesByEpoch[epoch][appId] += 1;
userVoteSpend[msg.sender] += msg.value;
}
userVotedApps.add(appId);
emit Voted(msg.sender, appId, epoch);
}
function initializeSchedule(uint40 _startTime, uint40 _epochDuration, uint96 _voteCost)
external
onlyRolesOrOwner(MANAGER_ROLE)
{
if (_startTime <= block.timestamp) {
revert InvalidSchedule();
}
if (_epochDuration == 0) {
revert InvalidSchedule();
}
// If the next schedule is set and has started, promote it to the current schedule
if (nextSchedule.startTime > 0 && block.timestamp >= nextSchedule.startTime) {
currentSchedule = nextSchedule;
}
if (currentSchedule.startTime == 0 || currentSchedule.startTime > block.timestamp) {
// No current schedule exists or starts in future, so initialize as current schedule
currentSchedule = Schedule(_startTime, _epochDuration, 0, _voteCost);
emit ScheduleInitialized(_startTime, _epochDuration, 0);
} else {
// Get the total elapsed time since the current schedule started
uint256 elapsedTime = _startTime - currentSchedule.startTime;
// Ensure the new schedule starts at the end of an epoch from the existing schedule
if (elapsedTime % currentSchedule.epochDuration != 0) {
revert InvalidSchedule();
}
// Calculate epochs completed in the current schedule up to the new schedule
uint256 completedInCurrentSchedule = elapsedTime / currentSchedule.epochDuration;
// Set the next schedule with the correct epochsCompleted carried over
nextSchedule = Schedule(
_startTime,
_epochDuration,
uint40(completedInCurrentSchedule + currentSchedule.epochsCompleted),
_voteCost
);
emit ScheduleInitialized(
_startTime, _epochDuration, completedInCurrentSchedule + currentSchedule.epochsCompleted
);
}
}
function setVoteGovernor(address newGovernor) external onlyOwner {
voteGovernor = IVoteGovernor(newGovernor);
emit VoteGovernorUpdated(newGovernor);
}
function setAppRegistry(address newAppRegistry) external onlyOwner {
appRegistry = IAppRegistry(newAppRegistry);
emit AppRegistryUpdated(newAppRegistry);
}
function withdraw() external onlyOwner {
(bool success,) = payable(msg.sender).call{value: address(this).balance}("");
if (!success) {
revert WithdrawFailed();
}
}
function userVotesRemaining(address user) external view returns (uint256) {
uint256 epoch = currentEpoch();
if (epoch == 0) {
return 0;
}
return _remainingVotes(user, epoch);
}
function getVotesForApp(uint256 appId, uint256 epoch) external view returns (uint256) {
return appVotesByEpoch[epoch][appId];
}
function getUserVotes(address user, uint256 epoch) external view returns (uint256[] memory) {
EnumerableSetLib.Uint256Set storage userVotedApps = userVotes[user][epoch];
uint256[] memory votedApps = new uint256[](userVotedApps.length());
for (uint256 i = 0; i < userVotedApps.length(); i++) {
votedApps[i] = userVotedApps.at(i);
}
return votedApps;
}
function currentEpoch() public view returns (uint256 epoch) {
Schedule memory schedule = _getActiveSchedule();
return _getCurrentEpoch(schedule);
}
function voteCost() external view returns (uint96) {
return _getActiveSchedule().voteCost;
}
function _getCurrentEpoch(Schedule memory schedule) private view returns (uint256) {
if (schedule.startTime == 0) {
return 0;
}
if (block.timestamp < schedule.startTime) {
return 0;
}
uint256 epochsInCurrentSchedule = (block.timestamp - schedule.startTime) / schedule.epochDuration;
return schedule.epochsCompleted + epochsInCurrentSchedule + 1;
}
function _getActiveSchedule() private view returns (Schedule memory schedule) {
schedule = nextSchedule;
if (schedule.startTime == 0 || block.timestamp < schedule.startTime) {
return currentSchedule;
}
}
function _remainingVotes(address user, uint256 epoch) private view returns (uint256) {
uint256 votesForUser = voteGovernor.votesForUser(user, epoch);
uint256 votesUsed = userVotes[user][epoch].length();
if (votesUsed >= votesForUser) {
return 0;
} else {
unchecked {
return votesForUser - votesUsed;
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IVoteGovernor {
function votesForUser(address user, uint256 epochId) external view returns (uint256 votes);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IAppRegistry {
error AppDoesNotExist();
event AppAdded(uint256 indexed appId, string name);
event AppStatusUpdated(uint256 indexed appId, bool enabled);
event AppRenamed(uint256 indexed appId, string newName);
function appCount() external view returns (uint256);
function appName(uint256 appId) external view returns (string memory);
function appEnabled(uint256 appId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import {Ownable} from "./Ownable.sol";
/// @notice Simple single owner and multiroles authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/OwnableRoles.sol)
///
/// @dev Note:
/// This implementation does NOT auto-initialize the owner to `msg.sender`.
/// You MUST call the `_initializeOwner` in the constructor / initializer.
///
/// While the ownable portion follows
/// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
/// the nomenclature for the 2-step ownership handover may be unique to this codebase.
abstract contract OwnableRoles is Ownable {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EVENTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The `user`'s roles is updated to `roles`.
/// Each bit of `roles` represents whether the role is set.
event RolesUpdated(address indexed user, uint256 indexed roles);
/// @dev `keccak256(bytes("RolesUpdated(address,uint256)"))`.
uint256 private constant _ROLES_UPDATED_EVENT_SIGNATURE =
0x715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe26;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STORAGE */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The role slot of `user` is given by:
/// ```
/// mstore(0x00, or(shl(96, user), _ROLE_SLOT_SEED))
/// let roleSlot := keccak256(0x00, 0x20)
/// ```
/// This automatically ignores the upper bits of the `user` in case
/// they are not clean, as well as keep the `keccak256` under 32-bytes.
///
/// Note: This is equivalent to `uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))`.
uint256 private constant _ROLE_SLOT_SEED = 0x8b78c6d8;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Overwrite the roles directly without authorization guard.
function _setRoles(address user, uint256 roles) internal virtual {
/// @solidity memory-safe-assembly
assembly {
mstore(0x0c, _ROLE_SLOT_SEED)
mstore(0x00, user)
// Store the new value.
sstore(keccak256(0x0c, 0x20), roles)
// Emit the {RolesUpdated} event.
log3(0, 0, _ROLES_UPDATED_EVENT_SIGNATURE, shr(96, mload(0x0c)), roles)
}
}
/// @dev Updates the roles directly without authorization guard.
/// If `on` is true, each set bit of `roles` will be turned on,
/// otherwise, each set bit of `roles` will be turned off.
function _updateRoles(address user, uint256 roles, bool on) internal virtual {
/// @solidity memory-safe-assembly
assembly {
mstore(0x0c, _ROLE_SLOT_SEED)
mstore(0x00, user)
let roleSlot := keccak256(0x0c, 0x20)
// Load the current value.
let current := sload(roleSlot)
// Compute the updated roles if `on` is true.
let updated := or(current, roles)
// Compute the updated roles if `on` is false.
// Use `and` to compute the intersection of `current` and `roles`,
// `xor` it with `current` to flip the bits in the intersection.
if iszero(on) { updated := xor(current, and(current, roles)) }
// Then, store the new value.
sstore(roleSlot, updated)
// Emit the {RolesUpdated} event.
log3(0, 0, _ROLES_UPDATED_EVENT_SIGNATURE, shr(96, mload(0x0c)), updated)
}
}
/// @dev Grants the roles directly without authorization guard.
/// Each bit of `roles` represents the role to turn on.
function _grantRoles(address user, uint256 roles) internal virtual {
_updateRoles(user, roles, true);
}
/// @dev Removes the roles directly without authorization guard.
/// Each bit of `roles` represents the role to turn off.
function _removeRoles(address user, uint256 roles) internal virtual {
_updateRoles(user, roles, false);
}
/// @dev Throws if the sender does not have any of the `roles`.
function _checkRoles(uint256 roles) internal view virtual {
/// @solidity memory-safe-assembly
assembly {
// Compute the role slot.
mstore(0x0c, _ROLE_SLOT_SEED)
mstore(0x00, caller())
// Load the stored value, and if the `and` intersection
// of the value and `roles` is zero, revert.
if iszero(and(sload(keccak256(0x0c, 0x20)), roles)) {
mstore(0x00, 0x82b42900) // `Unauthorized()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Throws if the sender is not the owner,
/// and does not have any of the `roles`.
/// Checks for ownership first, then lazily checks for roles.
function _checkOwnerOrRoles(uint256 roles) internal view virtual {
/// @solidity memory-safe-assembly
assembly {
// If the caller is not the stored owner.
// Note: `_ROLE_SLOT_SEED` is equal to `_OWNER_SLOT_NOT`.
if iszero(eq(caller(), sload(not(_ROLE_SLOT_SEED)))) {
// Compute the role slot.
mstore(0x0c, _ROLE_SLOT_SEED)
mstore(0x00, caller())
// Load the stored value, and if the `and` intersection
// of the value and `roles` is zero, revert.
if iszero(and(sload(keccak256(0x0c, 0x20)), roles)) {
mstore(0x00, 0x82b42900) // `Unauthorized()`.
revert(0x1c, 0x04)
}
}
}
}
/// @dev Throws if the sender does not have any of the `roles`,
/// and is not the owner.
/// Checks for roles first, then lazily checks for ownership.
function _checkRolesOrOwner(uint256 roles) internal view virtual {
/// @solidity memory-safe-assembly
assembly {
// Compute the role slot.
mstore(0x0c, _ROLE_SLOT_SEED)
mstore(0x00, caller())
// Load the stored value, and if the `and` intersection
// of the value and `roles` is zero, revert.
if iszero(and(sload(keccak256(0x0c, 0x20)), roles)) {
// If the caller is not the stored owner.
// Note: `_ROLE_SLOT_SEED` is equal to `_OWNER_SLOT_NOT`.
if iszero(eq(caller(), sload(not(_ROLE_SLOT_SEED)))) {
mstore(0x00, 0x82b42900) // `Unauthorized()`.
revert(0x1c, 0x04)
}
}
}
}
/// @dev Convenience function to return a `roles` bitmap from an array of `ordinals`.
/// This is meant for frontends like Etherscan, and is therefore not fully optimized.
/// Not recommended to be called on-chain.
/// Made internal to conserve bytecode. Wrap it in a public function if needed.
function _rolesFromOrdinals(uint8[] memory ordinals) internal pure returns (uint256 roles) {
/// @solidity memory-safe-assembly
assembly {
for { let i := shl(5, mload(ordinals)) } i { i := sub(i, 0x20) } {
// We don't need to mask the values of `ordinals`, as Solidity
// cleans dirty upper bits when storing variables into memory.
roles := or(shl(mload(add(ordinals, i)), 1), roles)
}
}
}
/// @dev Convenience function to return an array of `ordinals` from the `roles` bitmap.
/// This is meant for frontends like Etherscan, and is therefore not fully optimized.
/// Not recommended to be called on-chain.
/// Made internal to conserve bytecode. Wrap it in a public function if needed.
function _ordinalsFromRoles(uint256 roles) internal pure returns (uint8[] memory ordinals) {
/// @solidity memory-safe-assembly
assembly {
// Grab the pointer to the free memory.
ordinals := mload(0x40)
let ptr := add(ordinals, 0x20)
let o := 0
// The absence of lookup tables, De Bruijn, etc., here is intentional for
// smaller bytecode, as this function is not meant to be called on-chain.
for { let t := roles } 1 {} {
mstore(ptr, o)
// `shr` 5 is equivalent to multiplying by 0x20.
// Push back into the ordinals array if the bit is set.
ptr := add(ptr, shl(5, and(t, 1)))
o := add(o, 1)
t := shr(o, roles)
if iszero(t) { break }
}
// Store the length of `ordinals`.
mstore(ordinals, shr(5, sub(ptr, add(ordinals, 0x20))))
// Allocate the memory.
mstore(0x40, ptr)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PUBLIC UPDATE FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Allows the owner to grant `user` `roles`.
/// If the `user` already has a role, then it will be an no-op for the role.
function grantRoles(address user, uint256 roles) public payable virtual onlyOwner {
_grantRoles(user, roles);
}
/// @dev Allows the owner to remove `user` `roles`.
/// If the `user` does not have a role, then it will be an no-op for the role.
function revokeRoles(address user, uint256 roles) public payable virtual onlyOwner {
_removeRoles(user, roles);
}
/// @dev Allow the caller to remove their own roles.
/// If the caller does not have a role, then it will be an no-op for the role.
function renounceRoles(uint256 roles) public payable virtual {
_removeRoles(msg.sender, roles);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PUBLIC READ FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the roles of `user`.
function rolesOf(address user) public view virtual returns (uint256 roles) {
/// @solidity memory-safe-assembly
assembly {
// Compute the role slot.
mstore(0x0c, _ROLE_SLOT_SEED)
mstore(0x00, user)
// Load the stored value.
roles := sload(keccak256(0x0c, 0x20))
}
}
/// @dev Returns whether `user` has any of `roles`.
function hasAnyRole(address user, uint256 roles) public view virtual returns (bool) {
return rolesOf(user) & roles != 0;
}
/// @dev Returns whether `user` has all of `roles`.
function hasAllRoles(address user, uint256 roles) public view virtual returns (bool) {
return rolesOf(user) & roles == roles;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* MODIFIERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Marks a function as only callable by an account with `roles`.
modifier onlyRoles(uint256 roles) virtual {
_checkRoles(roles);
_;
}
/// @dev Marks a function as only callable by the owner or by an account
/// with `roles`. Checks for ownership first, then lazily checks for roles.
modifier onlyOwnerOrRoles(uint256 roles) virtual {
_checkOwnerOrRoles(roles);
_;
}
/// @dev Marks a function as only callable by an account with `roles`
/// or the owner. Checks for roles first, then lazily checks for ownership.
modifier onlyRolesOrOwner(uint256 roles) virtual {
_checkRolesOrOwner(roles);
_;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ROLE CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// IYKYK
uint256 internal constant _ROLE_0 = 1 << 0;
uint256 internal constant _ROLE_1 = 1 << 1;
uint256 internal constant _ROLE_2 = 1 << 2;
uint256 internal constant _ROLE_3 = 1 << 3;
uint256 internal constant _ROLE_4 = 1 << 4;
uint256 internal constant _ROLE_5 = 1 << 5;
uint256 internal constant _ROLE_6 = 1 << 6;
uint256 internal constant _ROLE_7 = 1 << 7;
uint256 internal constant _ROLE_8 = 1 << 8;
uint256 internal constant _ROLE_9 = 1 << 9;
uint256 internal constant _ROLE_10 = 1 << 10;
uint256 internal constant _ROLE_11 = 1 << 11;
uint256 internal constant _ROLE_12 = 1 << 12;
uint256 internal constant _ROLE_13 = 1 << 13;
uint256 internal constant _ROLE_14 = 1 << 14;
uint256 internal constant _ROLE_15 = 1 << 15;
uint256 internal constant _ROLE_16 = 1 << 16;
uint256 internal constant _ROLE_17 = 1 << 17;
uint256 internal constant _ROLE_18 = 1 << 18;
uint256 internal constant _ROLE_19 = 1 << 19;
uint256 internal constant _ROLE_20 = 1 << 20;
uint256 internal constant _ROLE_21 = 1 << 21;
uint256 internal constant _ROLE_22 = 1 << 22;
uint256 internal constant _ROLE_23 = 1 << 23;
uint256 internal constant _ROLE_24 = 1 << 24;
uint256 internal constant _ROLE_25 = 1 << 25;
uint256 internal constant _ROLE_26 = 1 << 26;
uint256 internal constant _ROLE_27 = 1 << 27;
uint256 internal constant _ROLE_28 = 1 << 28;
uint256 internal constant _ROLE_29 = 1 << 29;
uint256 internal constant _ROLE_30 = 1 << 30;
uint256 internal constant _ROLE_31 = 1 << 31;
uint256 internal constant _ROLE_32 = 1 << 32;
uint256 internal constant _ROLE_33 = 1 << 33;
uint256 internal constant _ROLE_34 = 1 << 34;
uint256 internal constant _ROLE_35 = 1 << 35;
uint256 internal constant _ROLE_36 = 1 << 36;
uint256 internal constant _ROLE_37 = 1 << 37;
uint256 internal constant _ROLE_38 = 1 << 38;
uint256 internal constant _ROLE_39 = 1 << 39;
uint256 internal constant _ROLE_40 = 1 << 40;
uint256 internal constant _ROLE_41 = 1 << 41;
uint256 internal constant _ROLE_42 = 1 << 42;
uint256 internal constant _ROLE_43 = 1 << 43;
uint256 internal constant _ROLE_44 = 1 << 44;
uint256 internal constant _ROLE_45 = 1 << 45;
uint256 internal constant _ROLE_46 = 1 << 46;
uint256 internal constant _ROLE_47 = 1 << 47;
uint256 internal constant _ROLE_48 = 1 << 48;
uint256 internal constant _ROLE_49 = 1 << 49;
uint256 internal constant _ROLE_50 = 1 << 50;
uint256 internal constant _ROLE_51 = 1 << 51;
uint256 internal constant _ROLE_52 = 1 << 52;
uint256 internal constant _ROLE_53 = 1 << 53;
uint256 internal constant _ROLE_54 = 1 << 54;
uint256 internal constant _ROLE_55 = 1 << 55;
uint256 internal constant _ROLE_56 = 1 << 56;
uint256 internal constant _ROLE_57 = 1 << 57;
uint256 internal constant _ROLE_58 = 1 << 58;
uint256 internal constant _ROLE_59 = 1 << 59;
uint256 internal constant _ROLE_60 = 1 << 60;
uint256 internal constant _ROLE_61 = 1 << 61;
uint256 internal constant _ROLE_62 = 1 << 62;
uint256 internal constant _ROLE_63 = 1 << 63;
uint256 internal constant _ROLE_64 = 1 << 64;
uint256 internal constant _ROLE_65 = 1 << 65;
uint256 internal constant _ROLE_66 = 1 << 66;
uint256 internal constant _ROLE_67 = 1 << 67;
uint256 internal constant _ROLE_68 = 1 << 68;
uint256 internal constant _ROLE_69 = 1 << 69;
uint256 internal constant _ROLE_70 = 1 << 70;
uint256 internal constant _ROLE_71 = 1 << 71;
uint256 internal constant _ROLE_72 = 1 << 72;
uint256 internal constant _ROLE_73 = 1 << 73;
uint256 internal constant _ROLE_74 = 1 << 74;
uint256 internal constant _ROLE_75 = 1 << 75;
uint256 internal constant _ROLE_76 = 1 << 76;
uint256 internal constant _ROLE_77 = 1 << 77;
uint256 internal constant _ROLE_78 = 1 << 78;
uint256 internal constant _ROLE_79 = 1 << 79;
uint256 internal constant _ROLE_80 = 1 << 80;
uint256 internal constant _ROLE_81 = 1 << 81;
uint256 internal constant _ROLE_82 = 1 << 82;
uint256 internal constant _ROLE_83 = 1 << 83;
uint256 internal constant _ROLE_84 = 1 << 84;
uint256 internal constant _ROLE_85 = 1 << 85;
uint256 internal constant _ROLE_86 = 1 << 86;
uint256 internal constant _ROLE_87 = 1 << 87;
uint256 internal constant _ROLE_88 = 1 << 88;
uint256 internal constant _ROLE_89 = 1 << 89;
uint256 internal constant _ROLE_90 = 1 << 90;
uint256 internal constant _ROLE_91 = 1 << 91;
uint256 internal constant _ROLE_92 = 1 << 92;
uint256 internal constant _ROLE_93 = 1 << 93;
uint256 internal constant _ROLE_94 = 1 << 94;
uint256 internal constant _ROLE_95 = 1 << 95;
uint256 internal constant _ROLE_96 = 1 << 96;
uint256 internal constant _ROLE_97 = 1 << 97;
uint256 internal constant _ROLE_98 = 1 << 98;
uint256 internal constant _ROLE_99 = 1 << 99;
uint256 internal constant _ROLE_100 = 1 << 100;
uint256 internal constant _ROLE_101 = 1 << 101;
uint256 internal constant _ROLE_102 = 1 << 102;
uint256 internal constant _ROLE_103 = 1 << 103;
uint256 internal constant _ROLE_104 = 1 << 104;
uint256 internal constant _ROLE_105 = 1 << 105;
uint256 internal constant _ROLE_106 = 1 << 106;
uint256 internal constant _ROLE_107 = 1 << 107;
uint256 internal constant _ROLE_108 = 1 << 108;
uint256 internal constant _ROLE_109 = 1 << 109;
uint256 internal constant _ROLE_110 = 1 << 110;
uint256 internal constant _ROLE_111 = 1 << 111;
uint256 internal constant _ROLE_112 = 1 << 112;
uint256 internal constant _ROLE_113 = 1 << 113;
uint256 internal constant _ROLE_114 = 1 << 114;
uint256 internal constant _ROLE_115 = 1 << 115;
uint256 internal constant _ROLE_116 = 1 << 116;
uint256 internal constant _ROLE_117 = 1 << 117;
uint256 internal constant _ROLE_118 = 1 << 118;
uint256 internal constant _ROLE_119 = 1 << 119;
uint256 internal constant _ROLE_120 = 1 << 120;
uint256 internal constant _ROLE_121 = 1 << 121;
uint256 internal constant _ROLE_122 = 1 << 122;
uint256 internal constant _ROLE_123 = 1 << 123;
uint256 internal constant _ROLE_124 = 1 << 124;
uint256 internal constant _ROLE_125 = 1 << 125;
uint256 internal constant _ROLE_126 = 1 << 126;
uint256 internal constant _ROLE_127 = 1 << 127;
uint256 internal constant _ROLE_128 = 1 << 128;
uint256 internal constant _ROLE_129 = 1 << 129;
uint256 internal constant _ROLE_130 = 1 << 130;
uint256 internal constant _ROLE_131 = 1 << 131;
uint256 internal constant _ROLE_132 = 1 << 132;
uint256 internal constant _ROLE_133 = 1 << 133;
uint256 internal constant _ROLE_134 = 1 << 134;
uint256 internal constant _ROLE_135 = 1 << 135;
uint256 internal constant _ROLE_136 = 1 << 136;
uint256 internal constant _ROLE_137 = 1 << 137;
uint256 internal constant _ROLE_138 = 1 << 138;
uint256 internal constant _ROLE_139 = 1 << 139;
uint256 internal constant _ROLE_140 = 1 << 140;
uint256 internal constant _ROLE_141 = 1 << 141;
uint256 internal constant _ROLE_142 = 1 << 142;
uint256 internal constant _ROLE_143 = 1 << 143;
uint256 internal constant _ROLE_144 = 1 << 144;
uint256 internal constant _ROLE_145 = 1 << 145;
uint256 internal constant _ROLE_146 = 1 << 146;
uint256 internal constant _ROLE_147 = 1 << 147;
uint256 internal constant _ROLE_148 = 1 << 148;
uint256 internal constant _ROLE_149 = 1 << 149;
uint256 internal constant _ROLE_150 = 1 << 150;
uint256 internal constant _ROLE_151 = 1 << 151;
uint256 internal constant _ROLE_152 = 1 << 152;
uint256 internal constant _ROLE_153 = 1 << 153;
uint256 internal constant _ROLE_154 = 1 << 154;
uint256 internal constant _ROLE_155 = 1 << 155;
uint256 internal constant _ROLE_156 = 1 << 156;
uint256 internal constant _ROLE_157 = 1 << 157;
uint256 internal constant _ROLE_158 = 1 << 158;
uint256 internal constant _ROLE_159 = 1 << 159;
uint256 internal constant _ROLE_160 = 1 << 160;
uint256 internal constant _ROLE_161 = 1 << 161;
uint256 internal constant _ROLE_162 = 1 << 162;
uint256 internal constant _ROLE_163 = 1 << 163;
uint256 internal constant _ROLE_164 = 1 << 164;
uint256 internal constant _ROLE_165 = 1 << 165;
uint256 internal constant _ROLE_166 = 1 << 166;
uint256 internal constant _ROLE_167 = 1 << 167;
uint256 internal constant _ROLE_168 = 1 << 168;
uint256 internal constant _ROLE_169 = 1 << 169;
uint256 internal constant _ROLE_170 = 1 << 170;
uint256 internal constant _ROLE_171 = 1 << 171;
uint256 internal constant _ROLE_172 = 1 << 172;
uint256 internal constant _ROLE_173 = 1 << 173;
uint256 internal constant _ROLE_174 = 1 << 174;
uint256 internal constant _ROLE_175 = 1 << 175;
uint256 internal constant _ROLE_176 = 1 << 176;
uint256 internal constant _ROLE_177 = 1 << 177;
uint256 internal constant _ROLE_178 = 1 << 178;
uint256 internal constant _ROLE_179 = 1 << 179;
uint256 internal constant _ROLE_180 = 1 << 180;
uint256 internal constant _ROLE_181 = 1 << 181;
uint256 internal constant _ROLE_182 = 1 << 182;
uint256 internal constant _ROLE_183 = 1 << 183;
uint256 internal constant _ROLE_184 = 1 << 184;
uint256 internal constant _ROLE_185 = 1 << 185;
uint256 internal constant _ROLE_186 = 1 << 186;
uint256 internal constant _ROLE_187 = 1 << 187;
uint256 internal constant _ROLE_188 = 1 << 188;
uint256 internal constant _ROLE_189 = 1 << 189;
uint256 internal constant _ROLE_190 = 1 << 190;
uint256 internal constant _ROLE_191 = 1 << 191;
uint256 internal constant _ROLE_192 = 1 << 192;
uint256 internal constant _ROLE_193 = 1 << 193;
uint256 internal constant _ROLE_194 = 1 << 194;
uint256 internal constant _ROLE_195 = 1 << 195;
uint256 internal constant _ROLE_196 = 1 << 196;
uint256 internal constant _ROLE_197 = 1 << 197;
uint256 internal constant _ROLE_198 = 1 << 198;
uint256 internal constant _ROLE_199 = 1 << 199;
uint256 internal constant _ROLE_200 = 1 << 200;
uint256 internal constant _ROLE_201 = 1 << 201;
uint256 internal constant _ROLE_202 = 1 << 202;
uint256 internal constant _ROLE_203 = 1 << 203;
uint256 internal constant _ROLE_204 = 1 << 204;
uint256 internal constant _ROLE_205 = 1 << 205;
uint256 internal constant _ROLE_206 = 1 << 206;
uint256 internal constant _ROLE_207 = 1 << 207;
uint256 internal constant _ROLE_208 = 1 << 208;
uint256 internal constant _ROLE_209 = 1 << 209;
uint256 internal constant _ROLE_210 = 1 << 210;
uint256 internal constant _ROLE_211 = 1 << 211;
uint256 internal constant _ROLE_212 = 1 << 212;
uint256 internal constant _ROLE_213 = 1 << 213;
uint256 internal constant _ROLE_214 = 1 << 214;
uint256 internal constant _ROLE_215 = 1 << 215;
uint256 internal constant _ROLE_216 = 1 << 216;
uint256 internal constant _ROLE_217 = 1 << 217;
uint256 internal constant _ROLE_218 = 1 << 218;
uint256 internal constant _ROLE_219 = 1 << 219;
uint256 internal constant _ROLE_220 = 1 << 220;
uint256 internal constant _ROLE_221 = 1 << 221;
uint256 internal constant _ROLE_222 = 1 << 222;
uint256 internal constant _ROLE_223 = 1 << 223;
uint256 internal constant _ROLE_224 = 1 << 224;
uint256 internal constant _ROLE_225 = 1 << 225;
uint256 internal constant _ROLE_226 = 1 << 226;
uint256 internal constant _ROLE_227 = 1 << 227;
uint256 internal constant _ROLE_228 = 1 << 228;
uint256 internal constant _ROLE_229 = 1 << 229;
uint256 internal constant _ROLE_230 = 1 << 230;
uint256 internal constant _ROLE_231 = 1 << 231;
uint256 internal constant _ROLE_232 = 1 << 232;
uint256 internal constant _ROLE_233 = 1 << 233;
uint256 internal constant _ROLE_234 = 1 << 234;
uint256 internal constant _ROLE_235 = 1 << 235;
uint256 internal constant _ROLE_236 = 1 << 236;
uint256 internal constant _ROLE_237 = 1 << 237;
uint256 internal constant _ROLE_238 = 1 << 238;
uint256 internal constant _ROLE_239 = 1 << 239;
uint256 internal constant _ROLE_240 = 1 << 240;
uint256 internal constant _ROLE_241 = 1 << 241;
uint256 internal constant _ROLE_242 = 1 << 242;
uint256 internal constant _ROLE_243 = 1 << 243;
uint256 internal constant _ROLE_244 = 1 << 244;
uint256 internal constant _ROLE_245 = 1 << 245;
uint256 internal constant _ROLE_246 = 1 << 246;
uint256 internal constant _ROLE_247 = 1 << 247;
uint256 internal constant _ROLE_248 = 1 << 248;
uint256 internal constant _ROLE_249 = 1 << 249;
uint256 internal constant _ROLE_250 = 1 << 250;
uint256 internal constant _ROLE_251 = 1 << 251;
uint256 internal constant _ROLE_252 = 1 << 252;
uint256 internal constant _ROLE_253 = 1 << 253;
uint256 internal constant _ROLE_254 = 1 << 254;
uint256 internal constant _ROLE_255 = 1 << 255;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library for managing enumerable sets in storage.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/EnumerableSetLib.sol)
///
/// @dev Note:
/// In many applications, the number of elements in an enumerable set is small.
/// This enumerable set implementation avoids storing the length and indices
/// for up to 3 elements. Once the length exceeds 3 for the first time, the length
/// and indices will be initialized. The amortized cost of adding elements is O(1).
///
/// The AddressSet implementation packs the length with the 0th entry.
library EnumerableSetLib {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The index must be less than the length.
error IndexOutOfBounds();
/// @dev The value cannot be the zero sentinel.
error ValueIsZeroSentinel();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev A sentinel value to denote the zero value in storage.
/// No elements can be equal to this value.
/// `uint72(bytes9(keccak256(bytes("_ZERO_SENTINEL"))))`.
uint256 private constant _ZERO_SENTINEL = 0xfbb67fda52d4bfb8bf;
/// @dev The storage layout is given by:
/// ```
/// mstore(0x04, _ENUMERABLE_ADDRESS_SET_SLOT_SEED)
/// mstore(0x00, set.slot)
/// let rootSlot := keccak256(0x00, 0x24)
/// mstore(0x20, rootSlot)
/// mstore(0x00, shr(96, shl(96, value)))
/// let positionSlot := keccak256(0x00, 0x40)
/// let valueSlot := add(rootSlot, sload(positionSlot))
/// let valueInStorage := shr(96, sload(valueSlot))
/// let lazyLength := shr(160, shl(160, sload(rootSlot)))
/// ```
uint256 private constant _ENUMERABLE_ADDRESS_SET_SLOT_SEED = 0x978aab92;
/// @dev The storage layout is given by:
/// ```
/// mstore(0x04, _ENUMERABLE_WORD_SET_SLOT_SEED)
/// mstore(0x00, set.slot)
/// let rootSlot := keccak256(0x00, 0x24)
/// mstore(0x20, rootSlot)
/// mstore(0x00, value)
/// let positionSlot := keccak256(0x00, 0x40)
/// let valueSlot := add(rootSlot, sload(positionSlot))
/// let valueInStorage := sload(valueSlot)
/// let lazyLength := sload(not(rootSlot))
/// ```
uint256 private constant _ENUMERABLE_WORD_SET_SLOT_SEED = 0x18fb5864;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STRUCTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev An enumerable address set in storage.
struct AddressSet {
uint256 _spacer;
}
/// @dev An enumerable bytes32 set in storage.
struct Bytes32Set {
uint256 _spacer;
}
/// @dev An enumerable uint256 set in storage.
struct Uint256Set {
uint256 _spacer;
}
/// @dev An enumerable int256 set in storage.
struct Int256Set {
uint256 _spacer;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* GETTERS / SETTERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the number of elements in the set.
function length(AddressSet storage set) internal view returns (uint256 result) {
bytes32 rootSlot = _rootSlot(set);
/// @solidity memory-safe-assembly
assembly {
let rootPacked := sload(rootSlot)
let n := shr(160, shl(160, rootPacked))
result := shr(1, n)
for {} iszero(or(iszero(shr(96, rootPacked)), n)) {} {
result := 1
if iszero(sload(add(rootSlot, result))) { break }
result := 2
if iszero(sload(add(rootSlot, result))) { break }
result := 3
break
}
}
}
/// @dev Returns the number of elements in the set.
function length(Bytes32Set storage set) internal view returns (uint256 result) {
bytes32 rootSlot = _rootSlot(set);
/// @solidity memory-safe-assembly
assembly {
let n := sload(not(rootSlot))
result := shr(1, n)
for {} iszero(n) {} {
result := 0
if iszero(sload(add(rootSlot, result))) { break }
result := 1
if iszero(sload(add(rootSlot, result))) { break }
result := 2
if iszero(sload(add(rootSlot, result))) { break }
result := 3
break
}
}
}
/// @dev Returns the number of elements in the set.
function length(Uint256Set storage set) internal view returns (uint256 result) {
result = length(_toBytes32Set(set));
}
/// @dev Returns the number of elements in the set.
function length(Int256Set storage set) internal view returns (uint256 result) {
result = length(_toBytes32Set(set));
}
/// @dev Returns whether `value` is in the set.
function contains(AddressSet storage set, address value) internal view returns (bool result) {
bytes32 rootSlot = _rootSlot(set);
/// @solidity memory-safe-assembly
assembly {
value := shr(96, shl(96, value))
if eq(value, _ZERO_SENTINEL) {
mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`.
revert(0x1c, 0x04)
}
if iszero(value) { value := _ZERO_SENTINEL }
let rootPacked := sload(rootSlot)
for {} 1 {} {
if iszero(shr(160, shl(160, rootPacked))) {
result := 1
if eq(shr(96, rootPacked), value) { break }
if eq(shr(96, sload(add(rootSlot, 1))), value) { break }
if eq(shr(96, sload(add(rootSlot, 2))), value) { break }
result := 0
break
}
mstore(0x20, rootSlot)
mstore(0x00, value)
result := iszero(iszero(sload(keccak256(0x00, 0x40))))
break
}
}
}
/// @dev Returns whether `value` is in the set.
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool result) {
bytes32 rootSlot = _rootSlot(set);
/// @solidity memory-safe-assembly
assembly {
if eq(value, _ZERO_SENTINEL) {
mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`.
revert(0x1c, 0x04)
}
if iszero(value) { value := _ZERO_SENTINEL }
for {} 1 {} {
if iszero(sload(not(rootSlot))) {
result := 1
if eq(sload(rootSlot), value) { break }
if eq(sload(add(rootSlot, 1)), value) { break }
if eq(sload(add(rootSlot, 2)), value) { break }
result := 0
break
}
mstore(0x20, rootSlot)
mstore(0x00, value)
result := iszero(iszero(sload(keccak256(0x00, 0x40))))
break
}
}
}
/// @dev Returns whether `value` is in the set.
function contains(Uint256Set storage set, uint256 value) internal view returns (bool result) {
result = contains(_toBytes32Set(set), bytes32(value));
}
/// @dev Returns whether `value` is in the set.
function contains(Int256Set storage set, int256 value) internal view returns (bool result) {
result = contains(_toBytes32Set(set), bytes32(uint256(value)));
}
/// @dev Adds `value` to the set. Returns whether `value` was not in the set.
function add(AddressSet storage set, address value) internal returns (bool result) {
bytes32 rootSlot = _rootSlot(set);
/// @solidity memory-safe-assembly
assembly {
value := shr(96, shl(96, value))
if eq(value, _ZERO_SENTINEL) {
mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`.
revert(0x1c, 0x04)
}
if iszero(value) { value := _ZERO_SENTINEL }
let rootPacked := sload(rootSlot)
for { let n := shr(160, shl(160, rootPacked)) } 1 {} {
mstore(0x20, rootSlot)
if iszero(n) {
let v0 := shr(96, rootPacked)
if iszero(v0) {
sstore(rootSlot, shl(96, value))
result := 1
break
}
if eq(v0, value) { break }
let v1 := shr(96, sload(add(rootSlot, 1)))
if iszero(v1) {
sstore(add(rootSlot, 1), shl(96, value))
result := 1
break
}
if eq(v1, value) { break }
let v2 := shr(96, sload(add(rootSlot, 2)))
if iszero(v2) {
sstore(add(rootSlot, 2), shl(96, value))
result := 1
break
}
if eq(v2, value) { break }
mstore(0x00, v0)
sstore(keccak256(0x00, 0x40), 1)
mstore(0x00, v1)
sstore(keccak256(0x00, 0x40), 2)
mstore(0x00, v2)
sstore(keccak256(0x00, 0x40), 3)
rootPacked := or(rootPacked, 7)
n := 7
}
mstore(0x00, value)
let p := keccak256(0x00, 0x40)
if iszero(sload(p)) {
n := shr(1, n)
sstore(add(rootSlot, n), shl(96, value))
sstore(p, add(1, n))
sstore(rootSlot, add(2, rootPacked))
result := 1
break
}
break
}
}
}
/// @dev Adds `value` to the set. Returns whether `value` was not in the set.
function add(Bytes32Set storage set, bytes32 value) internal returns (bool result) {
bytes32 rootSlot = _rootSlot(set);
/// @solidity memory-safe-assembly
assembly {
if eq(value, _ZERO_SENTINEL) {
mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`.
revert(0x1c, 0x04)
}
if iszero(value) { value := _ZERO_SENTINEL }
for { let n := sload(not(rootSlot)) } 1 {} {
mstore(0x20, rootSlot)
if iszero(n) {
let v0 := sload(rootSlot)
if iszero(v0) {
sstore(rootSlot, value)
result := 1
break
}
if eq(v0, value) { break }
let v1 := sload(add(rootSlot, 1))
if iszero(v1) {
sstore(add(rootSlot, 1), value)
result := 1
break
}
if eq(v1, value) { break }
let v2 := sload(add(rootSlot, 2))
if iszero(v2) {
sstore(add(rootSlot, 2), value)
result := 1
break
}
if eq(v2, value) { break }
mstore(0x00, v0)
sstore(keccak256(0x00, 0x40), 1)
mstore(0x00, v1)
sstore(keccak256(0x00, 0x40), 2)
mstore(0x00, v2)
sstore(keccak256(0x00, 0x40), 3)
n := 7
}
mstore(0x00, value)
let p := keccak256(0x00, 0x40)
if iszero(sload(p)) {
n := shr(1, n)
sstore(add(rootSlot, n), value)
sstore(p, add(1, n))
sstore(not(rootSlot), or(1, shl(1, add(1, n))))
result := 1
break
}
break
}
}
}
/// @dev Adds `value` to the set. Returns whether `value` was not in the set.
function add(Uint256Set storage set, uint256 value) internal returns (bool result) {
result = add(_toBytes32Set(set), bytes32(value));
}
/// @dev Adds `value` to the set. Returns whether `value` was not in the set.
function add(Int256Set storage set, int256 value) internal returns (bool result) {
result = add(_toBytes32Set(set), bytes32(uint256(value)));
}
/// @dev Removes `value` from the set. Returns whether `value` was in the set.
function remove(AddressSet storage set, address value) internal returns (bool result) {
bytes32 rootSlot = _rootSlot(set);
/// @solidity memory-safe-assembly
assembly {
value := shr(96, shl(96, value))
if eq(value, _ZERO_SENTINEL) {
mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`.
revert(0x1c, 0x04)
}
if iszero(value) { value := _ZERO_SENTINEL }
let rootPacked := sload(rootSlot)
for { let n := shr(160, shl(160, rootPacked)) } 1 {} {
if iszero(n) {
result := 1
if eq(shr(96, rootPacked), value) {
sstore(rootSlot, sload(add(rootSlot, 1)))
sstore(add(rootSlot, 1), sload(add(rootSlot, 2)))
sstore(add(rootSlot, 2), 0)
break
}
if eq(shr(96, sload(add(rootSlot, 1))), value) {
sstore(add(rootSlot, 1), sload(add(rootSlot, 2)))
sstore(add(rootSlot, 2), 0)
break
}
if eq(shr(96, sload(add(rootSlot, 2))), value) {
sstore(add(rootSlot, 2), 0)
break
}
result := 0
break
}
mstore(0x20, rootSlot)
mstore(0x00, value)
let p := keccak256(0x00, 0x40)
let position := sload(p)
if iszero(position) { break }
n := sub(shr(1, n), 1)
if iszero(eq(sub(position, 1), n)) {
let lastValue := shr(96, sload(add(rootSlot, n)))
sstore(add(rootSlot, sub(position, 1)), shl(96, lastValue))
sstore(add(rootSlot, n), 0)
mstore(0x00, lastValue)
sstore(keccak256(0x00, 0x40), position)
}
sstore(rootSlot, or(shl(96, shr(96, sload(rootSlot))), or(shl(1, n), 1)))
sstore(p, 0)
result := 1
break
}
}
}
/// @dev Removes `value` from the set. Returns whether `value` was in the set.
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool result) {
bytes32 rootSlot = _rootSlot(set);
/// @solidity memory-safe-assembly
assembly {
if eq(value, _ZERO_SENTINEL) {
mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`.
revert(0x1c, 0x04)
}
if iszero(value) { value := _ZERO_SENTINEL }
for { let n := sload(not(rootSlot)) } 1 {} {
if iszero(n) {
result := 1
if eq(sload(rootSlot), value) {
sstore(rootSlot, sload(add(rootSlot, 1)))
sstore(add(rootSlot, 1), sload(add(rootSlot, 2)))
sstore(add(rootSlot, 2), 0)
break
}
if eq(sload(add(rootSlot, 1)), value) {
sstore(add(rootSlot, 1), sload(add(rootSlot, 2)))
sstore(add(rootSlot, 2), 0)
break
}
if eq(sload(add(rootSlot, 2)), value) {
sstore(add(rootSlot, 2), 0)
break
}
result := 0
break
}
mstore(0x20, rootSlot)
mstore(0x00, value)
let p := keccak256(0x00, 0x40)
let position := sload(p)
if iszero(position) { break }
n := sub(shr(1, n), 1)
if iszero(eq(sub(position, 1), n)) {
let lastValue := sload(add(rootSlot, n))
sstore(add(rootSlot, sub(position, 1)), lastValue)
sstore(add(rootSlot, n), 0)
mstore(0x00, lastValue)
sstore(keccak256(0x00, 0x40), position)
}
sstore(not(rootSlot), or(shl(1, n), 1))
sstore(p, 0)
result := 1
break
}
}
}
/// @dev Removes `value` from the set. Returns whether `value` was in the set.
function remove(Uint256Set storage set, uint256 value) internal returns (bool result) {
result = remove(_toBytes32Set(set), bytes32(value));
}
/// @dev Removes `value` from the set. Returns whether `value` was in the set.
function remove(Int256Set storage set, int256 value) internal returns (bool result) {
result = remove(_toBytes32Set(set), bytes32(uint256(value)));
}
/// @dev Returns all of the values in the set.
/// Note: This can consume more gas than the block gas limit for large sets.
function values(AddressSet storage set) internal view returns (address[] memory result) {
bytes32 rootSlot = _rootSlot(set);
/// @solidity memory-safe-assembly
assembly {
let zs := _ZERO_SENTINEL
let rootPacked := sload(rootSlot)
let n := shr(160, shl(160, rootPacked))
result := mload(0x40)
let o := add(0x20, result)
let v := shr(96, rootPacked)
mstore(o, mul(v, iszero(eq(v, zs))))
for {} 1 {} {
if iszero(n) {
if v {
n := 1
v := shr(96, sload(add(rootSlot, n)))
if v {
n := 2
mstore(add(o, 0x20), mul(v, iszero(eq(v, zs))))
v := shr(96, sload(add(rootSlot, n)))
if v {
n := 3
mstore(add(o, 0x40), mul(v, iszero(eq(v, zs))))
}
}
}
break
}
n := shr(1, n)
for { let i := 1 } lt(i, n) { i := add(i, 1) } {
v := shr(96, sload(add(rootSlot, i)))
mstore(add(o, shl(5, i)), mul(v, iszero(eq(v, zs))))
}
break
}
mstore(result, n)
mstore(0x40, add(o, shl(5, n)))
}
}
/// @dev Returns all of the values in the set.
/// Note: This can consume more gas than the block gas limit for large sets.
function values(Bytes32Set storage set) internal view returns (bytes32[] memory result) {
bytes32 rootSlot = _rootSlot(set);
/// @solidity memory-safe-assembly
assembly {
let zs := _ZERO_SENTINEL
let n := sload(not(rootSlot))
result := mload(0x40)
let o := add(0x20, result)
for {} 1 {} {
if iszero(n) {
let v := sload(rootSlot)
if v {
n := 1
mstore(o, mul(v, iszero(eq(v, zs))))
v := sload(add(rootSlot, n))
if v {
n := 2
mstore(add(o, 0x20), mul(v, iszero(eq(v, zs))))
v := sload(add(rootSlot, n))
if v {
n := 3
mstore(add(o, 0x40), mul(v, iszero(eq(v, zs))))
}
}
}
break
}
n := shr(1, n)
for { let i := 0 } lt(i, n) { i := add(i, 1) } {
let v := sload(add(rootSlot, i))
mstore(add(o, shl(5, i)), mul(v, iszero(eq(v, zs))))
}
break
}
mstore(result, n)
mstore(0x40, add(o, shl(5, n)))
}
}
/// @dev Returns all of the values in the set.
/// Note: This can consume more gas than the block gas limit for large sets.
function values(Uint256Set storage set) internal view returns (uint256[] memory result) {
result = _toUints(values(_toBytes32Set(set)));
}
/// @dev Returns all of the values in the set.
/// Note: This can consume more gas than the block gas limit for large sets.
function values(Int256Set storage set) internal view returns (int256[] memory result) {
result = _toInts(values(_toBytes32Set(set)));
}
/// @dev Returns the element at index `i` in the set.
function at(AddressSet storage set, uint256 i) internal view returns (address result) {
bytes32 rootSlot = _rootSlot(set);
/// @solidity memory-safe-assembly
assembly {
result := shr(96, sload(add(rootSlot, i)))
result := mul(result, iszero(eq(result, _ZERO_SENTINEL)))
}
if (i >= length(set)) revert IndexOutOfBounds();
}
/// @dev Returns the element at index `i` in the set.
function at(Bytes32Set storage set, uint256 i) internal view returns (bytes32 result) {
result = _rootSlot(set);
/// @solidity memory-safe-assembly
assembly {
result := sload(add(result, i))
result := mul(result, iszero(eq(result, _ZERO_SENTINEL)))
}
if (i >= length(set)) revert IndexOutOfBounds();
}
/// @dev Returns the element at index `i` in the set.
function at(Uint256Set storage set, uint256 i) internal view returns (uint256 result) {
result = uint256(at(_toBytes32Set(set), i));
}
/// @dev Returns the element at index `i` in the set.
function at(Int256Set storage set, uint256 i) internal view returns (int256 result) {
result = int256(uint256(at(_toBytes32Set(set), i)));
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PRIVATE HELPERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the root slot.
function _rootSlot(AddressSet storage s) private pure returns (bytes32 r) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x04, _ENUMERABLE_ADDRESS_SET_SLOT_SEED)
mstore(0x00, s.slot)
r := keccak256(0x00, 0x24)
}
}
/// @dev Returns the root slot.
function _rootSlot(Bytes32Set storage s) private pure returns (bytes32 r) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x04, _ENUMERABLE_WORD_SET_SLOT_SEED)
mstore(0x00, s.slot)
r := keccak256(0x00, 0x24)
}
}
/// @dev Casts to a Bytes32Set.
function _toBytes32Set(Uint256Set storage s) private pure returns (Bytes32Set storage c) {
/// @solidity memory-safe-assembly
assembly {
c.slot := s.slot
}
}
/// @dev Casts to a Bytes32Set.
function _toBytes32Set(Int256Set storage s) private pure returns (Bytes32Set storage c) {
/// @solidity memory-safe-assembly
assembly {
c.slot := s.slot
}
}
/// @dev Casts to a uint256 array.
function _toUints(bytes32[] memory a) private pure returns (uint256[] memory c) {
/// @solidity memory-safe-assembly
assembly {
c := a
}
}
/// @dev Casts to a int256 array.
function _toInts(bytes32[] memory a) private pure returns (int256[] memory c) {
/// @solidity memory-safe-assembly
assembly {
c := a
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Simple single owner authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
///
/// @dev Note:
/// This implementation does NOT auto-initialize the owner to `msg.sender`.
/// You MUST call the `_initializeOwner` in the constructor / initializer.
///
/// While the ownable portion follows
/// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
/// the nomenclature for the 2-step ownership handover may be unique to this codebase.
abstract contract Ownable {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The caller is not authorized to call the function.
error Unauthorized();
/// @dev The `newOwner` cannot be the zero address.
error NewOwnerIsZeroAddress();
/// @dev The `pendingOwner` does not have a valid handover request.
error NoHandoverRequest();
/// @dev Cannot double-initialize.
error AlreadyInitialized();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EVENTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The ownership is transferred from `oldOwner` to `newOwner`.
/// This event is intentionally kept the same as OpenZeppelin's Ownable to be
/// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
/// despite it not being as lightweight as a single argument event.
event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);
/// @dev An ownership handover to `pendingOwner` has been requested.
event OwnershipHandoverRequested(address indexed pendingOwner);
/// @dev The ownership handover to `pendingOwner` has been canceled.
event OwnershipHandoverCanceled(address indexed pendingOwner);
/// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;
/// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;
/// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STORAGE */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The owner slot is given by:
/// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`.
/// It is intentionally chosen to be a high value
/// to avoid collision with lower slots.
/// The choice of manual storage layout is to enable compatibility
/// with both regular and upgradeable contracts.
bytes32 internal constant _OWNER_SLOT =
0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927;
/// The ownership handover slot of `newOwner` is given by:
/// ```
/// mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
/// let handoverSlot := keccak256(0x00, 0x20)
/// ```
/// It stores the expiry timestamp of the two-step ownership handover.
uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Override to return true to make `_initializeOwner` prevent double-initialization.
function _guardInitializeOwner() internal pure virtual returns (bool guard) {}
/// @dev Initializes the owner directly without authorization guard.
/// This function must be called upon initialization,
/// regardless of whether the contract is upgradeable or not.
/// This is to enable generalization to both regular and upgradeable contracts,
/// and to save gas in case the initial owner is not the caller.
/// For performance reasons, this function will not check if there
/// is an existing owner.
function _initializeOwner(address newOwner) internal virtual {
if (_guardInitializeOwner()) {
/// @solidity memory-safe-assembly
assembly {
let ownerSlot := _OWNER_SLOT
if sload(ownerSlot) {
mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`.
revert(0x1c, 0x04)
}
// Clean the upper 96 bits.
newOwner := shr(96, shl(96, newOwner))
// Store the new value.
sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
// Emit the {OwnershipTransferred} event.
log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
}
} else {
/// @solidity memory-safe-assembly
assembly {
// Clean the upper 96 bits.
newOwner := shr(96, shl(96, newOwner))
// Store the new value.
sstore(_OWNER_SLOT, newOwner)
// Emit the {OwnershipTransferred} event.
log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
}
}
}
/// @dev Sets the owner directly without authorization guard.
function _setOwner(address newOwner) internal virtual {
if (_guardInitializeOwner()) {
/// @solidity memory-safe-assembly
assembly {
let ownerSlot := _OWNER_SLOT
// Clean the upper 96 bits.
newOwner := shr(96, shl(96, newOwner))
// Emit the {OwnershipTransferred} event.
log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
// Store the new value.
sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
}
} else {
/// @solidity memory-safe-assembly
assembly {
let ownerSlot := _OWNER_SLOT
// Clean the upper 96 bits.
newOwner := shr(96, shl(96, newOwner))
// Emit the {OwnershipTransferred} event.
log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
// Store the new value.
sstore(ownerSlot, newOwner)
}
}
}
/// @dev Throws if the sender is not the owner.
function _checkOwner() internal view virtual {
/// @solidity memory-safe-assembly
assembly {
// If the caller is not the stored owner, revert.
if iszero(eq(caller(), sload(_OWNER_SLOT))) {
mstore(0x00, 0x82b42900) // `Unauthorized()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Returns how long a two-step ownership handover is valid for in seconds.
/// Override to return a different value if needed.
/// Made internal to conserve bytecode. Wrap it in a public function if needed.
function _ownershipHandoverValidFor() internal view virtual returns (uint64) {
return 48 * 3600;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PUBLIC UPDATE FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Allows the owner to transfer the ownership to `newOwner`.
function transferOwnership(address newOwner) public payable virtual onlyOwner {
/// @solidity memory-safe-assembly
assembly {
if iszero(shl(96, newOwner)) {
mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
revert(0x1c, 0x04)
}
}
_setOwner(newOwner);
}
/// @dev Allows the owner to renounce their ownership.
function renounceOwnership() public payable virtual onlyOwner {
_setOwner(address(0));
}
/// @dev Request a two-step ownership handover to the caller.
/// The request will automatically expire in 48 hours (172800 seconds) by default.
function requestOwnershipHandover() public payable virtual {
unchecked {
uint256 expires = block.timestamp + _ownershipHandoverValidFor();
/// @solidity memory-safe-assembly
assembly {
// Compute and set the handover slot to `expires`.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, caller())
sstore(keccak256(0x0c, 0x20), expires)
// Emit the {OwnershipHandoverRequested} event.
log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
}
}
}
/// @dev Cancels the two-step ownership handover to the caller, if any.
function cancelOwnershipHandover() public payable virtual {
/// @solidity memory-safe-assembly
assembly {
// Compute and set the handover slot to 0.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, caller())
sstore(keccak256(0x0c, 0x20), 0)
// Emit the {OwnershipHandoverCanceled} event.
log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
}
}
/// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
/// Reverts if there is no existing ownership handover requested by `pendingOwner`.
function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
/// @solidity memory-safe-assembly
assembly {
// Compute and set the handover slot to 0.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, pendingOwner)
let handoverSlot := keccak256(0x0c, 0x20)
// If the handover does not exist, or has expired.
if gt(timestamp(), sload(handoverSlot)) {
mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`.
revert(0x1c, 0x04)
}
// Set the handover slot to 0.
sstore(handoverSlot, 0)
}
_setOwner(pendingOwner);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PUBLIC READ FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the owner of the contract.
function owner() public view virtual returns (address result) {
/// @solidity memory-safe-assembly
assembly {
result := sload(_OWNER_SLOT)
}
}
/// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
function ownershipHandoverExpiresAt(address pendingOwner)
public
view
virtual
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
// Compute the handover slot.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, pendingOwner)
// Load the handover slot.
result := sload(keccak256(0x0c, 0x20))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* MODIFIERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Marks a function as only callable by the owner.
modifier onlyOwner() virtual {
_checkOwner();
_;
}
}