ETH Price: $1,617.69 (+1.65%)

Contract Diff Checker

Contract Name:
Main

Contract Source Code:

<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

import {Ownable} from "@openzeppelin/access/Ownable.sol";
import {EnumerableSetLib} from "solady/utils/EnumerableSetLib.sol";
import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";

import {IBigcoin} from "./interfaces/IBigcoin.sol";

import {Miner} from "./types/Miner.sol";
import {Facility} from "./types/Facility.sol";
import {NewFacility} from "./types/NewFacility.sol";

import {Errors} from "./libraries/Errors.sol";
import {Events} from "./libraries/Events.sol";

// Bigcoin main program
contract Main is Ownable {
    using EnumerableSetLib for EnumerableSetLib.Uint256Set;

    // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    //            STORAGE
    // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

    /// @dev Bigcoin token address.
    address public bigcoin;

    /// @dev bigtoshi fee recipient.
    address public bigtoshi;

    /// @dev Mining start block.
    uint256 public startBlock;
    bool public miningHasStarted;

    // every miner has an id
    uint256 universalMinerId;

    /// @dev Total unique miners.
    uint256 public uniqueMinerCount;

    /// @dev Total facilities.
    uint256 public facilityCount;

    /// @dev Tracks last time we updated rewards.
    uint256 public lastRewardBlock;

    /// @dev Total network hashrate.
    uint256 public totalHashrate;

    /// @dev Tracks bigcoin per single hash.
    uint256 public cumulativeBigcoinPerHash;

    /// @dev Initial cooldown time is 24H.
    uint256 public cooldown = 24 hours;

    /// @dev Initial referral fee is 2.5%.
    uint256 public referralFee = 0.025e18;

    /// @dev Initial burn is 75%.
    uint256 public burnPct = 0.75e18;

    /// @dev Players total hashrate.
    mapping(address => uint256) public playerHashrate;

    /// @dev Players pending rewards.
    mapping(address => uint256) public playerPendingRewards;

    /// @dev Players debt (updated after rewards are updated for a player).
    mapping(address => uint256) public playerBigcoinDebt;

    /// @dev Tracks different miners and its stats.
    mapping(uint256 => Miner) public miners;

    /// @dev Tracks different facilities and its stats.
    mapping(uint256 => NewFacility) public facilities;

    /// @dev Tracks how many of each miner a player has. Only tracks Id.
    mapping(address => EnumerableSetLib.Uint256Set) public playerMinersOwned;

    /// @dev Maps minerId to the actual miner struct
    mapping(uint256 => Miner) public playerMinersId;

    /// @dev Tracks players facility stats.
    mapping(address => Facility) public ownerToFacility;

    /// @dev Tracks new players initializing in the game.
    mapping(address => bool) public initializedStarterFacility;

    /// @dev Tracks if a player has acquired a free miner.
    mapping(address => bool) public acquiredStarterMiner;

    /// @dev Tracks if a there's a secondary market for a certain miner.
    mapping(uint256 => uint256) public minerSecondHandMarket;

    /// @dev Tracks each miners coords for a player
    mapping(address => mapping(uint256 => mapping(uint256 => bool))) public playerOccupiedCoords;

    mapping(address => uint256) public lastFacilityUpgradeTimestamp;

    /// @dev Tracks referrals.
    mapping(address => address) public referrals;

    /// @dev Tracks referred users.
    mapping(address => address[]) public referredUsers;

    /// @dev Track how much each referrer got paid.
    mapping(address => uint256) public referralBonusPaid;

    /// @dev Purchasing initial facility price in ETH.
    uint256 public initialFacilityPrice = 0.005 ether;

    /// @dev start miner and facility index (these will never change since every player starts with same facility).
    uint256 public immutable STARTER_MINER_INDEX;
    uint256 public immutable STARTER_FACILITY_INDEX;

    /// @dev Halvening every 4,200,000 blocks, roughly 50 days
    uint256 public constant HALVING_INTERVAL = 4_200_000;

    /// @dev Initial bigcoin per block
    uint256 public constant INITIAL_BIGCOIN_PER_BLOCK = 2.5e18; // 2.5 Bigcoin per block

    uint256 public constant REWARDS_PRECISION = 1e18;

    // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    //          CONSTRUCTOR
    // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

    constructor() Ownable(msg.sender) {
        STARTER_MINER_INDEX = ++uniqueMinerCount;

        // add starter free miner
        miners[STARTER_MINER_INDEX] = Miner(
            STARTER_MINER_INDEX,
            type(uint256).max,
            type(uint256).max,
            type(uint256).max,
            100,
            1,
            type(uint256).max, // this is the free starter miner, people cannot buy it
            false
        );

        // add starter facility
        facilities[++facilityCount] = NewFacility(
            4,
            28,
            type(uint256).max, // starter facility, people cannot buy it
            false,
            2,
            2
        );

        STARTER_FACILITY_INDEX = facilityCount;
    }

    // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    //        USER FUNCTIONS
    // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

    /**
     * @dev All new players must purchase an initial facility with ETH.
     *
     * Players can only purchase new facilities after acquiring initial Facility.
     */
    function purchaseInitialFacility(address referrer) external payable {
        if (msg.value != initialFacilityPrice) {
            revert Errors.IncorrectValue();
        }

        if (initializedStarterFacility[msg.sender]) {
            revert Errors.AlreadyPurchasedInitialFactory();
        }

        if (referrer == msg.sender) {
            revert Errors.InvalidReferrer();
        }

        initializedStarterFacility[msg.sender] = true;

        if (referrer != address(0)) {
            referrals[msg.sender] = referrer;
            referredUsers[referrer].push(msg.sender);
        }

        NewFacility memory newFacility = facilities[STARTER_FACILITY_INDEX];
        Facility storage facility = ownerToFacility[msg.sender];

        // initialize players starter facility
        facility.facilityIndex = STARTER_FACILITY_INDEX;
        facility.maxMiners = newFacility.maxMiners;
        facility.totalPowerOutput = newFacility.totalPowerOutput;
        facility.x = newFacility.x;
        facility.y = newFacility.y;

        emit Events.InitialFacilityPurchased(msg.sender);
    }

    /**
     * @dev All new players can redeem 1 free miner.
     *
     * Players are not required to redeem a free miner.
     */
    function getFreeStarterMiner(uint256 x, uint256 y) external {
        if (acquiredStarterMiner[msg.sender]) {
            revert Errors.StarterMinerAlreadyAcquired();
        }

        acquiredStarterMiner[msg.sender] = true;

        Miner memory miner = miners[STARTER_MINER_INDEX];
        Facility storage facility = ownerToFacility[msg.sender];

        if (_isInvalidCoordinates(x, y, facility.x, facility.y)) {
            revert Errors.InvalidMinerCoordinates();
        }

        if (facility.currPowerOutput + miner.powerConsumption > facility.totalPowerOutput) {
            revert Errors.FacilityInadequatePowerOutput();
        }

        miner.x = x;
        miner.y = y;
        miner.id = ++universalMinerId;
        playerOccupiedCoords[msg.sender][x][y] = true;

        playerMinersOwned[msg.sender].add(universalMinerId);
        playerMinersId[universalMinerId] = miner;

        // increase facility miners
        facility.currMiners++;

        // increase power consumption from factory
        facility.currPowerOutput += miner.powerConsumption;

        // emit Events.FreeMinerRedeemed(msg.sender);
        emit Events.MinerBought(msg.sender, STARTER_MINER_INDEX, 0, universalMinerId, x, y);

        _increaseHashrate(msg.sender, miner.hashrate);
    }

    /**
     * @dev Purchase new miners using bigcoin.
     */
    function buyMiner(uint256 minerIndex, uint256 x, uint256 y) external {
        // check user has enough funds for miner and facility allows it
        Miner memory miner = miners[minerIndex];
        Facility storage facility = ownerToFacility[msg.sender];

        if (_isInvalidCoordinates(x, y, facility.x, facility.y)) {
            revert Errors.InvalidMinerCoordinates();
        }

        // this case will cover if an index too large is passed in
        if (!miner.inProduction) revert Errors.MinerNotInProduction();

        if (IBigcoin(bigcoin).balanceOf(msg.sender) < miner.cost) {
            revert Errors.TooPoor();
        }

        if (facility.currPowerOutput + miner.powerConsumption > facility.totalPowerOutput) {
            revert Errors.FacilityInadequatePowerOutput();
        }

        // transfer correct amt of bigcoin
        IBigcoin(bigcoin).transferFrom(msg.sender, address(this), miner.cost);

        // burn
        IBigcoin(bigcoin).burn(FixedPointMathLib.mulWad(miner.cost, burnPct));

        miner.x = x;
        miner.y = y;
        miner.id = ++universalMinerId;
        playerOccupiedCoords[msg.sender][x][y] = true;

        playerMinersOwned[msg.sender].add(universalMinerId);
        playerMinersId[universalMinerId] = miner;

        // increase facility miners
        facility.currMiners++;

        // increase power consumption from factory
        facility.currPowerOutput += miner.powerConsumption;

        emit Events.MinerBought(msg.sender, minerIndex, miner.cost, universalMinerId, x, y);

        _increaseHashrate(msg.sender, miner.hashrate);
    }

    /**
     * @dev Sell miners, if there's a secondary market, player will get bigcoin in return.
     *
     * Players will sell miners in the case they run out of spots in their facility to put new miners.
     */
    function sellMiner(uint256 minerId) external {
        if (!playerMinersOwned[msg.sender].contains(minerId)) {
            revert Errors.PlayerDoesNotOwnMiner();
        }

        Miner memory miner = playerMinersId[minerId];

        uint256 secondHandPrice = minerSecondHandMarket[miner.minerIndex];

        // if there's not enough bigcoin in this contract to pay out, revert
        if (secondHandPrice > IBigcoin(bigcoin).balanceOf(address(this))) {
            revert Errors.GreatDepression();
        }

        Facility storage facility = ownerToFacility[msg.sender];

        // decrease facility miners
        facility.currMiners--;

        // decrease power consumption from factory
        facility.currPowerOutput -= miner.powerConsumption;

        playerMinersOwned[msg.sender].remove(minerId);
        delete playerMinersId[minerId];
        playerOccupiedCoords[msg.sender][miner.x][miner.y] = false;

        emit Events.MinerSold(msg.sender, miner.minerIndex, secondHandPrice, minerId, miner.x, miner.y);

        _decreaseHashrate(msg.sender, miner.hashrate);

        if (secondHandPrice > 0) {
            IBigcoin(bigcoin).transfer(msg.sender, secondHandPrice);
        }
    }

    /**
     * @dev Purchase larger or more power output facility.
     *
     * Players must linearly climb the facilities.
     */
    function buyNewFacility() external {
        // need to purchase initial facility first
        if (!initializedStarterFacility[msg.sender]) {
            revert Errors.NeedToInitializeFacility();
        }

        Facility storage currFacility = ownerToFacility[msg.sender];
        uint256 currFacilityIndex = currFacility.facilityIndex;

        if (currFacilityIndex == facilityCount) {
            revert Errors.AlreadyAtMaxFacility();
        }

        // 24H cooldown between each facility upgrade
        if (block.timestamp - lastFacilityUpgradeTimestamp[msg.sender] < cooldown) {
            revert Errors.CantBuyNewFacilityYet();
        }

        NewFacility memory newFacility = facilities[currFacilityIndex + 1];

        if (!newFacility.inProduction) {
            revert Errors.NewFacilityNotInProduction();
        }

        if (IBigcoin(bigcoin).balanceOf(msg.sender) < newFacility.cost) {
            revert Errors.TooPoor();
        }

        IBigcoin(bigcoin).transferFrom(msg.sender, address(this), newFacility.cost);

        // burn
        IBigcoin(bigcoin).burn(FixedPointMathLib.mulWad(newFacility.cost, burnPct));

        currFacility.facilityIndex++;
        currFacility.maxMiners = newFacility.maxMiners;
        currFacility.totalPowerOutput = newFacility.totalPowerOutput;
        currFacility.x = newFacility.x;
        currFacility.y = newFacility.y;

        lastFacilityUpgradeTimestamp[msg.sender] = block.timestamp;

        emit Events.FacilityBought(msg.sender, currFacility.facilityIndex, newFacility.cost);
    }

    /**
     * @dev Claim rewards for player.
     */
    function claimRewards() external {
        _updateRewards(msg.sender);

        uint256 rewards = playerPendingRewards[msg.sender];
        if (rewards == 0) {
            revert Errors.NoRewardsPending();
        }

        playerPendingRewards[msg.sender] = 0;

        // referral bonus
        uint256 referralBonus = FixedPointMathLib.mulWad(rewards, referralFee);
        uint256 finalRewards = rewards - referralBonus;

        IBigcoin(bigcoin).mint(msg.sender, finalRewards);

        address referrer = referrals[msg.sender];
        if (referrer != address(0)) {
            IBigcoin(bigcoin).mint(referrer, referralBonus);
            referralBonusPaid[referrer] += referralBonus;
        } else {
            // else mint referral fee to this contract
            IBigcoin(bigcoin).mint(address(this), referralBonus);
            referralBonusPaid[address(this)] += referralBonus;
        }

        emit Events.RewardsClaimed(msg.sender, rewards);
    }

    // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    //       INTERNAL FUNCTIONS
    // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

    /**
     * @dev Update global cumulative rewards before game state changes.
     */
    function _updateCumulativeRewards() internal {
        if (totalHashrate == 0) {
            lastRewardBlock = block.number;
            return;
        }

        // if we have not updated rewards and a halvening occurs, we must add the different
        // bigcoin emissions per halvening
        uint256 currentBlock = lastRewardBlock;
        uint256 lastBigcoinPerBlock =
            INITIAL_BIGCOIN_PER_BLOCK / (2 ** ((lastRewardBlock - startBlock) / HALVING_INTERVAL));

        while (currentBlock < block.number) {
            uint256 nextHalvingBlock =
                (startBlock % HALVING_INTERVAL) + ((currentBlock / HALVING_INTERVAL) + 1) * HALVING_INTERVAL;
            uint256 endBlock = (nextHalvingBlock < block.number) ? nextHalvingBlock : block.number;

            // apply correct emission rate for this segment
            cumulativeBigcoinPerHash +=
                ((lastBigcoinPerBlock * (endBlock - currentBlock) * REWARDS_PRECISION) / totalHashrate);

            // move to next segment
            currentBlock = endBlock;

            // if a halving has happened, apply the new rate
            if (currentBlock == nextHalvingBlock) {
                lastBigcoinPerBlock /= 2;
            }
        }

        lastRewardBlock = block.number;
    }

    function _updateRewards(address player) internal {
        _updateCumulativeRewards();

        playerPendingRewards[player] +=
            (playerHashrate[player] * (cumulativeBigcoinPerHash - playerBigcoinDebt[player])) / REWARDS_PRECISION;

        playerBigcoinDebt[player] = cumulativeBigcoinPerHash;
    }

    /**
     * @dev Increase players hashrate.
     */
    function _increaseHashrate(address player, uint256 hashrate) internal {
        // only start rewarding bigcoin per block when the first miner is added
        if (!miningHasStarted) {
            miningHasStarted = true;
            startBlock = block.number;
            lastRewardBlock = block.number;

            emit Events.MiningStarted(startBlock);
        }

        // update rewards and global state before modifying players state
        _updateRewards(player);

        totalHashrate += hashrate;
        playerHashrate[player] += hashrate;

        emit Events.PlayerHashrateIncreased(msg.sender, playerHashrate[player], playerPendingRewards[player]);
    }

    /**
     * @dev Decrease players hashrate.
     */
    function _decreaseHashrate(address player, uint256 hashrate) internal {
        // update rewards and global state before modifying players state
        _updateRewards(player);

        totalHashrate -= hashrate;
        playerHashrate[player] -= hashrate;

        emit Events.PlayerHashrateDecreased(msg.sender, playerHashrate[player], playerPendingRewards[player]);
    }

    /**
     * @dev checks the miners x,y coords are within bounds and there isn't an existent miner at that position.
     */
    function _isInvalidCoordinates(uint256 desiredX, uint256 desiredY, uint256 facilityX, uint256 facilityY)
        internal
        view
        returns (bool)
    {
        if (desiredX >= facilityX || desiredY >= facilityY) {
            return true;
        }

        return playerOccupiedCoords[msg.sender][desiredX][desiredY];
    }

    // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    //         VIEW FUNCTIONS
    // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

    /**
     * @dev Get the current mining emission rate based on halvings
     */
    function getBigcoinPerBlock() public view returns (uint256) {
        if (!miningHasStarted) {
            return 0;
        }

        uint256 halvingsSinceStart = (block.number - startBlock) / HALVING_INTERVAL;

        return INITIAL_BIGCOIN_PER_BLOCK / (2 ** halvingsSinceStart);
    }

    /**
     * @dev Get current pending rewards for player.
     */
    function pendingRewards(address player) external view returns (uint256) {
        // below is basically the same logic as _updateCumulativeRewards() but doesnt change state
        if (!miningHasStarted) {
            return 0;
        }

        if (totalHashrate == 0) {
            return FixedPointMathLib.mulWad(playerPendingRewards[player], 1e18 - referralFee);
        }

        uint256 currentBlock = lastRewardBlock;
        uint256 lastBigcoinPerBlock =
            INITIAL_BIGCOIN_PER_BLOCK / (2 ** ((lastRewardBlock - startBlock) / HALVING_INTERVAL));

        uint256 simulatedCumulativeBigcoinPerHash = cumulativeBigcoinPerHash;

        while (currentBlock < block.number) {
            uint256 nextHalvingBlock =
                (startBlock % HALVING_INTERVAL) + ((currentBlock / HALVING_INTERVAL) + 1) * HALVING_INTERVAL;
            uint256 endBlock = (nextHalvingBlock < block.number) ? nextHalvingBlock : block.number;

            // simulate rewards accumulation
            if (totalHashrate > 0) {
                simulatedCumulativeBigcoinPerHash +=
                    ((lastBigcoinPerBlock * (endBlock - currentBlock) * REWARDS_PRECISION) / totalHashrate);
            }

            // move to next segment
            currentBlock = endBlock;

            // if we reached a halving point, apply the new emission rate
            if (currentBlock == nextHalvingBlock) {
                lastBigcoinPerBlock /= 2;
            }
        }

        return FixedPointMathLib.mulWad(
            playerPendingRewards[player]
                + (
                    (playerHashrate[player] * (simulatedCumulativeBigcoinPerHash - playerBigcoinDebt[player]))
                        / REWARDS_PRECISION
                ),
            1e18 - referralFee
        );
    }

    /**
     * @dev Get current bigcoin a player mines per block.
     */
    function playerBigcoinPerBlock(address player) external view returns (uint256) {
        if (totalHashrate == 0) {
            return 0; // Prevent division by zero
        }

        uint256 currBigcoinPerBlock =
            INITIAL_BIGCOIN_PER_BLOCK / (2 ** ((block.number - startBlock) / HALVING_INTERVAL));

        return FixedPointMathLib.mulDiv(playerHashrate[player], currBigcoinPerBlock, totalHashrate);
    }

    /**
     * @dev Get blocks till next halvening.
     */
    function blocksUntilNextHalving() external view returns (uint256) {
        if (startBlock == 0) revert Errors.MiningHasntStarted();

        uint256 nextHalvingBlock =
            (startBlock % HALVING_INTERVAL) + ((block.number / HALVING_INTERVAL) + 1) * HALVING_INTERVAL;

        return nextHalvingBlock - block.number;
    }

    /**
     * @dev Get next available facility upgrade time.
     */
    function timeUntilNextFacilityUpgrade(address player) external view returns (uint256) {
        if (lastFacilityUpgradeTimestamp[player] + cooldown < block.timestamp) {
            return 0;
        }

        return (lastFacilityUpgradeTimestamp[player] + cooldown) - block.timestamp;
    }

    /**
     * @dev Get all miners for a player.
     */
    function getPlayerMinersPaginated(address player, uint256 startIndex, uint256 size)
        external
        view
        returns (Miner[] memory)
    {
        EnumerableSetLib.Uint256Set storage set = playerMinersOwned[player];
        uint256 length = set.length();

        // Return empty array if start index is beyond array bounds
        if (startIndex >= length) {
            return new Miner[](0);
        }

        // Calculate how many items we can actually return
        uint256 remaining = length - startIndex;
        uint256 returnSize = size > remaining ? remaining : size;

        Miner[] memory playerMiners = new Miner[](returnSize);
        for (uint256 i = 0; i < returnSize; i++) {
            playerMiners[i] = playerMinersId[set.at(startIndex + i)];
        }

        return playerMiners;
    }

    /**
     * @dev Get all referred users.
     */
    function getReferrals(address referrer) external view returns (address[] memory) {
        return referredUsers[referrer];
    }

    // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    //        OWNER FUNCTIONS
    // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

    /**
     * @dev Add new miner to game.
     */
    function addMiner(uint256 hashrate, uint256 powerConsumption, uint256 cost, bool inProduction) external onlyOwner {
        // must increment first cause compiler evaluates function arg before evaluating the assignment
        ++uniqueMinerCount;
        miners[uniqueMinerCount] = Miner(uniqueMinerCount, 0, 0, 0, hashrate, powerConsumption, cost, inProduction);

        emit Events.NewMinerAdded(uniqueMinerCount, hashrate, powerConsumption, cost, inProduction);
    }

    /**
     * @dev Allows or prevents miner from being purchased.
     *
     * Miners cannot be removed, only toggled off from purchased.
     */
    function toggleMinerProduction(uint256 minerIndex, bool inProduction) external onlyOwner {
        if (minerIndex < STARTER_MINER_INDEX || minerIndex > uniqueMinerCount) {
            revert Errors.InvalidMinerIndex();
        }
        Miner storage miner = miners[minerIndex];
        miner.inProduction = inProduction;

        emit Events.MinerProductionToggled(minerIndex, inProduction);
    }

    /**
     * @dev Add new facility to game.
     */
    function addFacility(
        uint256 maxMiners,
        uint256 totalPowerOutput,
        uint256 cost,
        bool inProduction,
        uint256 x,
        uint256 y
    ) external onlyOwner {
        if (x * y != maxMiners) {
            revert Errors.FacilityDimensionsInvalid();
        }

        if (facilities[facilityCount].x > x || facilities[facilityCount].y > y) {
            revert Errors.FacilityDimensionsInvalid();
        }

        if (facilities[facilityCount].totalPowerOutput > totalPowerOutput) {
            revert Errors.InvalidPowerOutput();
        }

        facilities[++facilityCount] = NewFacility(maxMiners, totalPowerOutput, cost, inProduction, x, y);

        emit Events.NewFacilityAdded(facilityCount, totalPowerOutput, cost, inProduction, x, y);
    }

    /**
     * @dev Allows or prevents new facilities from being purchased.
     *
     * New facilities cannot be removed, only toggled off from purchased.
     */
    function toggleFacilityProduction(uint256 facilityIndex, bool inProduction) external onlyOwner {
        if (facilityIndex < STARTER_FACILITY_INDEX || facilityIndex > facilityCount) {
            revert Errors.InvalidFacilityIndex();
        }

        NewFacility storage facility = facilities[facilityIndex];
        facility.inProduction = inProduction;

        emit Events.FacilityProductionToggled(facilityIndex, inProduction);
    }

    /**
     * @dev Add secondary market for a miner.
     */
    function addSecondaryMarketForMiner(uint256 minerIndex, uint256 price) external onlyOwner {
        minerSecondHandMarket[minerIndex] = price;

        emit Events.MinerSecondaryMarketAdded(minerIndex, price);
    }

    function setBigcoin(address _bigcoin) external onlyOwner {
        bigcoin = _bigcoin;
    }

    function setBigtoshi(address _bigtoshi) external onlyOwner {
        bigtoshi = _bigtoshi;
    }

    function setInitialFacilityPrice(uint256 _initialPrice) external onlyOwner {
        initialFacilityPrice = _initialPrice;
    }

    function setReferralFee(uint256 fee) external onlyOwner {
        if (fee > 1e18) revert Errors.InvalidFee();

        referralFee = fee;
    }

    function setBurnPct(uint256 burn) external onlyOwner {
        if (burn > 1e18) revert Errors.InvalidFee();

        burnPct = burn;
    }

    function setCooldown(uint256 _cooldown) external onlyOwner {
        cooldown = _cooldown;
    }

    function withdraw() external onlyOwner {
        uint256 balance = address(this).balance;
        (bool success,) = payable(bigtoshi).call{value: balance}("");

        if (!success) revert Errors.WithdrawFailed();
    }

    function withdrawBigcoin(uint256 amt) external onlyOwner {
        IBigcoin(bigcoin).transfer(bigtoshi, amt);
    }

    function changeMinerCost(uint256 minerIndex, uint256 newCost) external onlyOwner {
        if (minerIndex > uniqueMinerCount) {
            revert Errors.NonExistentMiner();
        }

        if (minerIndex == STARTER_MINER_INDEX) {
            revert Errors.CantModifyStarterMiner();
        }

        Miner storage miner = miners[minerIndex];

        miner.cost = newCost;

        emit Events.MinerCostChanged(minerIndex, newCost);
    }

    function changeFacilityCost(uint256 facilityIndex, uint256 newCost) external onlyOwner {
        if (facilityIndex > facilityCount) {
            revert Errors.NonExistentFacility();
        }

        if (facilityIndex == STARTER_FACILITY_INDEX) {
            revert Errors.CantModifyStarterFacility();
        }

        NewFacility storage facility = facilities[facilityIndex];

        facility.cost = newCost;

        emit Events.FacilityCostChanged(facilityIndex, newCost);
    }
}

<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library for managing enumerable sets in storage.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/EnumerableSetLib.sol)
///
/// @dev Note:
/// In many applications, the number of elements in an enumerable set is small.
/// This enumerable set implementation avoids storing the length and indices
/// for up to 3 elements. Once the length exceeds 3 for the first time, the length
/// and indices will be initialized. The amortized cost of adding elements is O(1).
///
/// The AddressSet implementation packs the length with the 0th entry.
///
/// All enumerable sets except Uint8Set use a pop and swap mechanism to remove elements.
/// This means that the iteration order of elements can change between element removals.
library EnumerableSetLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The index must be less than the length.
    error IndexOutOfBounds();

    /// @dev The value cannot be the zero sentinel.
    error ValueIsZeroSentinel();

    /// @dev Cannot accommodate a new unique value with the capacity.
    error ExceedsCapacity();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev A sentinel value to denote the zero value in storage.
    /// No elements can be equal to this value.
    /// `uint72(bytes9(keccak256(bytes("_ZERO_SENTINEL"))))`.
    uint256 private constant _ZERO_SENTINEL = 0xfbb67fda52d4bfb8bf;

    /// @dev The storage layout is given by:
    /// ```
    ///     mstore(0x04, _ENUMERABLE_ADDRESS_SET_SLOT_SEED)
    ///     mstore(0x00, set.slot)
    ///     let rootSlot := keccak256(0x00, 0x24)
    ///     mstore(0x20, rootSlot)
    ///     mstore(0x00, shr(96, shl(96, value)))
    ///     let positionSlot := keccak256(0x00, 0x40)
    ///     let valueSlot := add(rootSlot, sload(positionSlot))
    ///     let valueInStorage := shr(96, sload(valueSlot))
    ///     let lazyLength := shr(160, shl(160, sload(rootSlot)))
    /// ```
    uint256 private constant _ENUMERABLE_ADDRESS_SET_SLOT_SEED = 0x978aab92;

    /// @dev The storage layout is given by:
    /// ```
    ///     mstore(0x04, _ENUMERABLE_WORD_SET_SLOT_SEED)
    ///     mstore(0x00, set.slot)
    ///     let rootSlot := keccak256(0x00, 0x24)
    ///     mstore(0x20, rootSlot)
    ///     mstore(0x00, value)
    ///     let positionSlot := keccak256(0x00, 0x40)
    ///     let valueSlot := add(rootSlot, sload(positionSlot))
    ///     let valueInStorage := sload(valueSlot)
    ///     let lazyLength := sload(not(rootSlot))
    /// ```
    uint256 private constant _ENUMERABLE_WORD_SET_SLOT_SEED = 0x18fb5864;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STRUCTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev An enumerable address set in storage.
    struct AddressSet {
        uint256 _spacer;
    }

    /// @dev An enumerable bytes32 set in storage.
    struct Bytes32Set {
        uint256 _spacer;
    }

    /// @dev An enumerable uint256 set in storage.
    struct Uint256Set {
        uint256 _spacer;
    }

    /// @dev An enumerable int256 set in storage.
    struct Int256Set {
        uint256 _spacer;
    }

    /// @dev An enumerable uint8 set in storage. Useful for enums.
    struct Uint8Set {
        uint256 data;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     GETTERS / SETTERS                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the number of elements in the set.
    function length(AddressSet storage set) internal view returns (uint256 result) {
        bytes32 rootSlot = _rootSlot(set);
        /// @solidity memory-safe-assembly
        assembly {
            let rootPacked := sload(rootSlot)
            let n := shr(160, shl(160, rootPacked))
            result := shr(1, n)
            for {} iszero(or(iszero(shr(96, rootPacked)), n)) {} {
                result := 1
                if iszero(sload(add(rootSlot, result))) { break }
                result := 2
                if iszero(sload(add(rootSlot, result))) { break }
                result := 3
                break
            }
        }
    }

    /// @dev Returns the number of elements in the set.
    function length(Bytes32Set storage set) internal view returns (uint256 result) {
        bytes32 rootSlot = _rootSlot(set);
        /// @solidity memory-safe-assembly
        assembly {
            let n := sload(not(rootSlot))
            result := shr(1, n)
            for {} iszero(n) {} {
                result := 0
                if iszero(sload(add(rootSlot, result))) { break }
                result := 1
                if iszero(sload(add(rootSlot, result))) { break }
                result := 2
                if iszero(sload(add(rootSlot, result))) { break }
                result := 3
                break
            }
        }
    }

    /// @dev Returns the number of elements in the set.
    function length(Uint256Set storage set) internal view returns (uint256 result) {
        result = length(_toBytes32Set(set));
    }

    /// @dev Returns the number of elements in the set.
    function length(Int256Set storage set) internal view returns (uint256 result) {
        result = length(_toBytes32Set(set));
    }

    /// @dev Returns the number of elements in the set.
    function length(Uint8Set storage set) internal view returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            for { let packed := sload(set.slot) } packed { result := add(1, result) } {
                packed := xor(packed, and(packed, add(1, not(packed))))
            }
        }
    }

    /// @dev Returns whether `value` is in the set.
    function contains(AddressSet storage set, address value) internal view returns (bool result) {
        bytes32 rootSlot = _rootSlot(set);
        /// @solidity memory-safe-assembly
        assembly {
            value := shr(96, shl(96, value))
            if eq(value, _ZERO_SENTINEL) {
                mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`.
                revert(0x1c, 0x04)
            }
            if iszero(value) { value := _ZERO_SENTINEL }
            let rootPacked := sload(rootSlot)
            for {} 1 {} {
                if iszero(shr(160, shl(160, rootPacked))) {
                    result := 1
                    if eq(shr(96, rootPacked), value) { break }
                    if eq(shr(96, sload(add(rootSlot, 1))), value) { break }
                    if eq(shr(96, sload(add(rootSlot, 2))), value) { break }
                    result := 0
                    break
                }
                mstore(0x20, rootSlot)
                mstore(0x00, value)
                result := iszero(iszero(sload(keccak256(0x00, 0x40))))
                break
            }
        }
    }

    /// @dev Returns whether `value` is in the set.
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool result) {
        bytes32 rootSlot = _rootSlot(set);
        /// @solidity memory-safe-assembly
        assembly {
            if eq(value, _ZERO_SENTINEL) {
                mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`.
                revert(0x1c, 0x04)
            }
            if iszero(value) { value := _ZERO_SENTINEL }
            for {} 1 {} {
                if iszero(sload(not(rootSlot))) {
                    result := 1
                    if eq(sload(rootSlot), value) { break }
                    if eq(sload(add(rootSlot, 1)), value) { break }
                    if eq(sload(add(rootSlot, 2)), value) { break }
                    result := 0
                    break
                }
                mstore(0x20, rootSlot)
                mstore(0x00, value)
                result := iszero(iszero(sload(keccak256(0x00, 0x40))))
                break
            }
        }
    }

    /// @dev Returns whether `value` is in the set.
    function contains(Uint256Set storage set, uint256 value) internal view returns (bool result) {
        result = contains(_toBytes32Set(set), bytes32(value));
    }

    /// @dev Returns whether `value` is in the set.
    function contains(Int256Set storage set, int256 value) internal view returns (bool result) {
        result = contains(_toBytes32Set(set), bytes32(uint256(value)));
    }

    /// @dev Returns whether `value` is in the set.
    function contains(Uint8Set storage set, uint8 value) internal view returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := and(1, shr(and(0xff, value), sload(set.slot)))
        }
    }

    /// @dev Adds `value` to the set. Returns whether `value` was not in the set.
    function add(AddressSet storage set, address value) internal returns (bool result) {
        bytes32 rootSlot = _rootSlot(set);
        /// @solidity memory-safe-assembly
        assembly {
            value := shr(96, shl(96, value))
            if eq(value, _ZERO_SENTINEL) {
                mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`.
                revert(0x1c, 0x04)
            }
            if iszero(value) { value := _ZERO_SENTINEL }
            let rootPacked := sload(rootSlot)
            for { let n := shr(160, shl(160, rootPacked)) } 1 {} {
                mstore(0x20, rootSlot)
                if iszero(n) {
                    let v0 := shr(96, rootPacked)
                    if iszero(v0) {
                        sstore(rootSlot, shl(96, value))
                        result := 1
                        break
                    }
                    if eq(v0, value) { break }
                    let v1 := shr(96, sload(add(rootSlot, 1)))
                    if iszero(v1) {
                        sstore(add(rootSlot, 1), shl(96, value))
                        result := 1
                        break
                    }
                    if eq(v1, value) { break }
                    let v2 := shr(96, sload(add(rootSlot, 2)))
                    if iszero(v2) {
                        sstore(add(rootSlot, 2), shl(96, value))
                        result := 1
                        break
                    }
                    if eq(v2, value) { break }
                    mstore(0x00, v0)
                    sstore(keccak256(0x00, 0x40), 1)
                    mstore(0x00, v1)
                    sstore(keccak256(0x00, 0x40), 2)
                    mstore(0x00, v2)
                    sstore(keccak256(0x00, 0x40), 3)
                    rootPacked := or(rootPacked, 7)
                    n := 7
                }
                mstore(0x00, value)
                let p := keccak256(0x00, 0x40)
                if iszero(sload(p)) {
                    n := shr(1, n)
                    result := 1
                    sstore(p, add(1, n))
                    if iszero(n) {
                        sstore(rootSlot, or(3, shl(96, value)))
                        break
                    }
                    sstore(add(rootSlot, n), shl(96, value))
                    sstore(rootSlot, add(2, rootPacked))
                    break
                }
                break
            }
        }
    }

    /// @dev Adds `value` to the set. Returns whether `value` was not in the set.
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool result) {
        bytes32 rootSlot = _rootSlot(set);
        /// @solidity memory-safe-assembly
        assembly {
            if eq(value, _ZERO_SENTINEL) {
                mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`.
                revert(0x1c, 0x04)
            }
            if iszero(value) { value := _ZERO_SENTINEL }
            for { let n := sload(not(rootSlot)) } 1 {} {
                mstore(0x20, rootSlot)
                if iszero(n) {
                    let v0 := sload(rootSlot)
                    if iszero(v0) {
                        sstore(rootSlot, value)
                        result := 1
                        break
                    }
                    if eq(v0, value) { break }
                    let v1 := sload(add(rootSlot, 1))
                    if iszero(v1) {
                        sstore(add(rootSlot, 1), value)
                        result := 1
                        break
                    }
                    if eq(v1, value) { break }
                    let v2 := sload(add(rootSlot, 2))
                    if iszero(v2) {
                        sstore(add(rootSlot, 2), value)
                        result := 1
                        break
                    }
                    if eq(v2, value) { break }
                    mstore(0x00, v0)
                    sstore(keccak256(0x00, 0x40), 1)
                    mstore(0x00, v1)
                    sstore(keccak256(0x00, 0x40), 2)
                    mstore(0x00, v2)
                    sstore(keccak256(0x00, 0x40), 3)
                    n := 7
                }
                mstore(0x00, value)
                let p := keccak256(0x00, 0x40)
                if iszero(sload(p)) {
                    n := shr(1, n)
                    sstore(add(rootSlot, n), value)
                    sstore(p, add(1, n))
                    sstore(not(rootSlot), or(1, shl(1, add(1, n))))
                    result := 1
                    break
                }
                break
            }
        }
    }

    /// @dev Adds `value` to the set. Returns whether `value` was not in the set.
    function add(Uint256Set storage set, uint256 value) internal returns (bool result) {
        result = add(_toBytes32Set(set), bytes32(value));
    }

    /// @dev Adds `value` to the set. Returns whether `value` was not in the set.
    function add(Int256Set storage set, int256 value) internal returns (bool result) {
        result = add(_toBytes32Set(set), bytes32(uint256(value)));
    }

    /// @dev Adds `value` to the set. Returns whether `value` was not in the set.
    function add(Uint8Set storage set, uint8 value) internal returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(set.slot)
            let mask := shl(and(0xff, value), 1)
            sstore(set.slot, or(result, mask))
            result := iszero(and(result, mask))
        }
    }

    /// @dev Adds `value` to the set. Returns whether `value` was not in the set.
    /// Reverts if the set grows bigger than the custom on-the-fly capacity `cap`.
    function add(AddressSet storage set, address value, uint256 cap)
        internal
        returns (bool result)
    {
        if (result = add(set, value)) if (length(set) > cap) revert ExceedsCapacity();
    }

    /// @dev Adds `value` to the set. Returns whether `value` was not in the set.
    /// Reverts if the set grows bigger than the custom on-the-fly capacity `cap`.
    function add(Bytes32Set storage set, bytes32 value, uint256 cap)
        internal
        returns (bool result)
    {
        if (result = add(set, value)) if (length(set) > cap) revert ExceedsCapacity();
    }

    /// @dev Adds `value` to the set. Returns whether `value` was not in the set.
    /// Reverts if the set grows bigger than the custom on-the-fly capacity `cap`.
    function add(Uint256Set storage set, uint256 value, uint256 cap)
        internal
        returns (bool result)
    {
        if (result = add(set, value)) if (length(set) > cap) revert ExceedsCapacity();
    }

    /// @dev Adds `value` to the set. Returns whether `value` was not in the set.
    /// Reverts if the set grows bigger than the custom on-the-fly capacity `cap`.
    function add(Int256Set storage set, int256 value, uint256 cap) internal returns (bool result) {
        if (result = add(set, value)) if (length(set) > cap) revert ExceedsCapacity();
    }

    /// @dev Adds `value` to the set. Returns whether `value` was not in the set.
    /// Reverts if the set grows bigger than the custom on-the-fly capacity `cap`.
    function add(Uint8Set storage set, uint8 value, uint256 cap) internal returns (bool result) {
        if (result = add(set, value)) if (length(set) > cap) revert ExceedsCapacity();
    }

    /// @dev Removes `value` from the set. Returns whether `value` was in the set.
    function remove(AddressSet storage set, address value) internal returns (bool result) {
        bytes32 rootSlot = _rootSlot(set);
        /// @solidity memory-safe-assembly
        assembly {
            value := shr(96, shl(96, value))
            if eq(value, _ZERO_SENTINEL) {
                mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`.
                revert(0x1c, 0x04)
            }
            if iszero(value) { value := _ZERO_SENTINEL }
            let rootPacked := sload(rootSlot)
            for { let n := shr(160, shl(160, rootPacked)) } 1 {} {
                if iszero(n) {
                    result := 1
                    if eq(shr(96, rootPacked), value) {
                        sstore(rootSlot, sload(add(rootSlot, 1)))
                        sstore(add(rootSlot, 1), sload(add(rootSlot, 2)))
                        sstore(add(rootSlot, 2), 0)
                        break
                    }
                    if eq(shr(96, sload(add(rootSlot, 1))), value) {
                        sstore(add(rootSlot, 1), sload(add(rootSlot, 2)))
                        sstore(add(rootSlot, 2), 0)
                        break
                    }
                    if eq(shr(96, sload(add(rootSlot, 2))), value) {
                        sstore(add(rootSlot, 2), 0)
                        break
                    }
                    result := 0
                    break
                }
                mstore(0x20, rootSlot)
                mstore(0x00, value)
                let p := keccak256(0x00, 0x40)
                let position := sload(p)
                if iszero(position) { break }
                n := sub(shr(1, n), 1)
                if iszero(eq(sub(position, 1), n)) {
                    let lastValue := shr(96, sload(add(rootSlot, n)))
                    sstore(add(rootSlot, sub(position, 1)), shl(96, lastValue))
                    mstore(0x00, lastValue)
                    sstore(keccak256(0x00, 0x40), position)
                }
                sstore(rootSlot, or(shl(96, shr(96, sload(rootSlot))), or(shl(1, n), 1)))
                sstore(p, 0)
                result := 1
                break
            }
        }
    }

    /// @dev Removes `value` from the set. Returns whether `value` was in the set.
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool result) {
        bytes32 rootSlot = _rootSlot(set);
        /// @solidity memory-safe-assembly
        assembly {
            if eq(value, _ZERO_SENTINEL) {
                mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`.
                revert(0x1c, 0x04)
            }
            if iszero(value) { value := _ZERO_SENTINEL }
            for { let n := sload(not(rootSlot)) } 1 {} {
                if iszero(n) {
                    result := 1
                    if eq(sload(rootSlot), value) {
                        sstore(rootSlot, sload(add(rootSlot, 1)))
                        sstore(add(rootSlot, 1), sload(add(rootSlot, 2)))
                        sstore(add(rootSlot, 2), 0)
                        break
                    }
                    if eq(sload(add(rootSlot, 1)), value) {
                        sstore(add(rootSlot, 1), sload(add(rootSlot, 2)))
                        sstore(add(rootSlot, 2), 0)
                        break
                    }
                    if eq(sload(add(rootSlot, 2)), value) {
                        sstore(add(rootSlot, 2), 0)
                        break
                    }
                    result := 0
                    break
                }
                mstore(0x20, rootSlot)
                mstore(0x00, value)
                let p := keccak256(0x00, 0x40)
                let position := sload(p)
                if iszero(position) { break }
                n := sub(shr(1, n), 1)
                if iszero(eq(sub(position, 1), n)) {
                    let lastValue := sload(add(rootSlot, n))
                    sstore(add(rootSlot, sub(position, 1)), lastValue)
                    mstore(0x00, lastValue)
                    sstore(keccak256(0x00, 0x40), position)
                }
                sstore(not(rootSlot), or(shl(1, n), 1))
                sstore(p, 0)
                result := 1
                break
            }
        }
    }

    /// @dev Removes `value` from the set. Returns whether `value` was in the set.
    function remove(Uint256Set storage set, uint256 value) internal returns (bool result) {
        result = remove(_toBytes32Set(set), bytes32(value));
    }

    /// @dev Removes `value` from the set. Returns whether `value` was in the set.
    function remove(Int256Set storage set, int256 value) internal returns (bool result) {
        result = remove(_toBytes32Set(set), bytes32(uint256(value)));
    }

    /// @dev Removes `value` from the set. Returns whether `value` was in the set.
    function remove(Uint8Set storage set, uint8 value) internal returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(set.slot)
            let mask := shl(and(0xff, value), 1)
            sstore(set.slot, and(result, not(mask)))
            result := iszero(iszero(and(result, mask)))
        }
    }

    /// @dev Shorthand for `isAdd ? set.add(value, cap) : set.remove(value)`.
    function update(AddressSet storage set, address value, bool isAdd, uint256 cap)
        internal
        returns (bool)
    {
        return isAdd ? add(set, value, cap) : remove(set, value);
    }

    /// @dev Shorthand for `isAdd ? set.add(value, cap) : set.remove(value)`.
    function update(Bytes32Set storage set, bytes32 value, bool isAdd, uint256 cap)
        internal
        returns (bool)
    {
        return isAdd ? add(set, value, cap) : remove(set, value);
    }

    /// @dev Shorthand for `isAdd ? set.add(value, cap) : set.remove(value)`.
    function update(Uint256Set storage set, uint256 value, bool isAdd, uint256 cap)
        internal
        returns (bool)
    {
        return isAdd ? add(set, value, cap) : remove(set, value);
    }

    /// @dev Shorthand for `isAdd ? set.add(value, cap) : set.remove(value)`.
    function update(Int256Set storage set, int256 value, bool isAdd, uint256 cap)
        internal
        returns (bool)
    {
        return isAdd ? add(set, value, cap) : remove(set, value);
    }

    /// @dev Shorthand for `isAdd ? set.add(value, cap) : set.remove(value)`.
    function update(Uint8Set storage set, uint8 value, bool isAdd, uint256 cap)
        internal
        returns (bool)
    {
        return isAdd ? add(set, value, cap) : remove(set, value);
    }

    /// @dev Returns all of the values in the set.
    /// Note: This can consume more gas than the block gas limit for large sets.
    function values(AddressSet storage set) internal view returns (address[] memory result) {
        bytes32 rootSlot = _rootSlot(set);
        /// @solidity memory-safe-assembly
        assembly {
            let zs := _ZERO_SENTINEL
            let rootPacked := sload(rootSlot)
            let n := shr(160, shl(160, rootPacked))
            result := mload(0x40)
            let o := add(0x20, result)
            let v := shr(96, rootPacked)
            mstore(o, mul(v, iszero(eq(v, zs))))
            for {} 1 {} {
                if iszero(n) {
                    if v {
                        n := 1
                        v := shr(96, sload(add(rootSlot, n)))
                        if v {
                            n := 2
                            mstore(add(o, 0x20), mul(v, iszero(eq(v, zs))))
                            v := shr(96, sload(add(rootSlot, n)))
                            if v {
                                n := 3
                                mstore(add(o, 0x40), mul(v, iszero(eq(v, zs))))
                            }
                        }
                    }
                    break
                }
                n := shr(1, n)
                for { let i := 1 } lt(i, n) { i := add(i, 1) } {
                    v := shr(96, sload(add(rootSlot, i)))
                    mstore(add(o, shl(5, i)), mul(v, iszero(eq(v, zs))))
                }
                break
            }
            mstore(result, n)
            mstore(0x40, add(o, shl(5, n)))
        }
    }

    /// @dev Returns all of the values in the set.
    /// Note: This can consume more gas than the block gas limit for large sets.
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory result) {
        bytes32 rootSlot = _rootSlot(set);
        /// @solidity memory-safe-assembly
        assembly {
            let zs := _ZERO_SENTINEL
            let n := sload(not(rootSlot))
            result := mload(0x40)
            let o := add(0x20, result)
            for {} 1 {} {
                if iszero(n) {
                    let v := sload(rootSlot)
                    if v {
                        n := 1
                        mstore(o, mul(v, iszero(eq(v, zs))))
                        v := sload(add(rootSlot, n))
                        if v {
                            n := 2
                            mstore(add(o, 0x20), mul(v, iszero(eq(v, zs))))
                            v := sload(add(rootSlot, n))
                            if v {
                                n := 3
                                mstore(add(o, 0x40), mul(v, iszero(eq(v, zs))))
                            }
                        }
                    }
                    break
                }
                n := shr(1, n)
                for { let i := 0 } lt(i, n) { i := add(i, 1) } {
                    let v := sload(add(rootSlot, i))
                    mstore(add(o, shl(5, i)), mul(v, iszero(eq(v, zs))))
                }
                break
            }
            mstore(result, n)
            mstore(0x40, add(o, shl(5, n)))
        }
    }

    /// @dev Returns all of the values in the set.
    /// Note: This can consume more gas than the block gas limit for large sets.
    function values(Uint256Set storage set) internal view returns (uint256[] memory result) {
        result = _toUints(values(_toBytes32Set(set)));
    }

    /// @dev Returns all of the values in the set.
    /// Note: This can consume more gas than the block gas limit for large sets.
    function values(Int256Set storage set) internal view returns (int256[] memory result) {
        result = _toInts(values(_toBytes32Set(set)));
    }

    /// @dev Returns all of the values in the set.
    function values(Uint8Set storage set) internal view returns (uint8[] memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(0x40)
            let ptr := add(result, 0x20)
            let o := 0
            for { let packed := sload(set.slot) } packed {} {
                if iszero(and(packed, 0xffff)) {
                    o := add(o, 16)
                    packed := shr(16, packed)
                    continue
                }
                mstore(ptr, o)
                ptr := add(ptr, shl(5, and(packed, 1)))
                o := add(o, 1)
                packed := shr(1, packed)
            }
            mstore(result, shr(5, sub(ptr, add(result, 0x20))))
            mstore(0x40, ptr)
        }
    }

    /// @dev Returns the element at index `i` in the set. Reverts if `i` is out-of-bounds.
    function at(AddressSet storage set, uint256 i) internal view returns (address result) {
        bytes32 rootSlot = _rootSlot(set);
        /// @solidity memory-safe-assembly
        assembly {
            result := shr(96, sload(add(rootSlot, i)))
            result := mul(result, iszero(eq(result, _ZERO_SENTINEL)))
        }
        if (i >= length(set)) revert IndexOutOfBounds();
    }

    /// @dev Returns the element at index `i` in the set. Reverts if `i` is out-of-bounds.
    function at(Bytes32Set storage set, uint256 i) internal view returns (bytes32 result) {
        result = _rootSlot(set);
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(add(result, i))
            result := mul(result, iszero(eq(result, _ZERO_SENTINEL)))
        }
        if (i >= length(set)) revert IndexOutOfBounds();
    }

    /// @dev Returns the element at index `i` in the set. Reverts if `i` is out-of-bounds.
    function at(Uint256Set storage set, uint256 i) internal view returns (uint256 result) {
        result = uint256(at(_toBytes32Set(set), i));
    }

    /// @dev Returns the element at index `i` in the set. Reverts if `i` is out-of-bounds.
    function at(Int256Set storage set, uint256 i) internal view returns (int256 result) {
        result = int256(uint256(at(_toBytes32Set(set), i)));
    }

    /// @dev Returns the element at index `i` in the set. Reverts if `i` is out-of-bounds.
    function at(Uint8Set storage set, uint256 i) internal view returns (uint8 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let packed := sload(set.slot)
            for {} 1 {
                mstore(0x00, 0x4e23d035) // `IndexOutOfBounds()`.
                revert(0x1c, 0x04)
            } {
                if iszero(lt(i, 256)) { continue }
                for { let j := 0 } iszero(eq(i, j)) {} {
                    packed := xor(packed, and(packed, add(1, not(packed))))
                    j := add(j, 1)
                }
                if iszero(packed) { continue }
                break
            }
            // Find first set subroutine, optimized for smaller bytecode size.
            let x := and(packed, add(1, not(packed)))
            let r := shl(7, iszero(iszero(shr(128, x))))
            r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            // For the lower 5 bits of the result, use a De Bruijn lookup.
            // forgefmt: disable-next-item
            result := or(r, byte(and(div(0xd76453e0, shr(r, x)), 0x1f),
                0x001f0d1e100c1d070f090b19131c1706010e11080a1a141802121b1503160405))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      PRIVATE HELPERS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the root slot.
    function _rootSlot(AddressSet storage s) private pure returns (bytes32 r) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x04, _ENUMERABLE_ADDRESS_SET_SLOT_SEED)
            mstore(0x00, s.slot)
            r := keccak256(0x00, 0x24)
        }
    }

    /// @dev Returns the root slot.
    function _rootSlot(Bytes32Set storage s) private pure returns (bytes32 r) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x04, _ENUMERABLE_WORD_SET_SLOT_SEED)
            mstore(0x00, s.slot)
            r := keccak256(0x00, 0x24)
        }
    }

    /// @dev Casts to a Bytes32Set.
    function _toBytes32Set(Uint256Set storage s) private pure returns (Bytes32Set storage c) {
        /// @solidity memory-safe-assembly
        assembly {
            c.slot := s.slot
        }
    }

    /// @dev Casts to a Bytes32Set.
    function _toBytes32Set(Int256Set storage s) private pure returns (Bytes32Set storage c) {
        /// @solidity memory-safe-assembly
        assembly {
            c.slot := s.slot
        }
    }

    /// @dev Casts to a uint256 array.
    function _toUints(bytes32[] memory a) private pure returns (uint256[] memory c) {
        /// @solidity memory-safe-assembly
        assembly {
            c := a
        }
    }

    /// @dev Casts to a int256 array.
    function _toInts(bytes32[] memory a) private pure returns (int256[] memory c) {
        /// @solidity memory-safe-assembly
        assembly {
            c := a
        }
    }
}

<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The mantissa is too big to fit.
    error MantissaOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, due to an multiplication overflow.
    error SMulWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error SDivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The input outside the acceptable domain.
    error OutOfDomain();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if gt(x, div(not(0), y)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if iszero(eq(div(z, y), x)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, WAD)
            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
            if iszero(mul(y, eq(sdiv(z, WAD), x))) {
                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    /// Note: This function is an approximation.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is less than 0.5 we return zero.
            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
            if (x <= -41446531673892822313) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // `k` is in the range `[-61, 195]`.

            // Evaluate using a (6, 7)-term rational approximation.
            // `p` is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already `2**96` too large.
                r := sdiv(p, q)
            }

            // r should be in the range `(0.09, 0.25) * 2**96`.

            // We now need to multiply r by:
            // - The scale factor `s ≈ 6.031367120`.
            // - The `2**k` factor from the range reduction.
            // - The `1e18 / 2**96` factor for base conversion.
            // We do this all at once, with an intermediate result in `2**213`
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function lnWad(int256 x) internal pure returns (int256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
            // We do this by multiplying by `2**96 / 10**18`. But since
            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
            // and add `ln(2**96 / 10**18)` at the end.

            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // We place the check here for more optimal stack operations.
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
            // forgefmt: disable-next-item
            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x := shr(159, shl(r, x))

            // Evaluate using a (8, 8)-term rational approximation.
            // `p` is made monic, we will multiply by a scale factor later.
            // forgefmt: disable-next-item
            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                sar(96, mul(add(43456485725739037958740375743393,
                sar(96, mul(add(24828157081833163892658089445524,
                sar(96, mul(add(3273285459638523848632254066296,
                    x), x))), x))), x)), 11111509109440967052023855526967)
            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.

            // `q` is monic by convention.
            let q := add(5573035233440673466300451813936, x)
            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
            q := add(909429971244387300277376558375, sar(96, mul(x, q)))

            // `p / q` is in the range `(0, 0.125) * 2**96`.

            // Finalization, we need to:
            // - Multiply by the scale factor `s = 5.549…`.
            // - Add `ln(2**96 / 10**18)`.
            // - Add `k * ln(2)`.
            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.

            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already `2**96` too large.
            p := sdiv(p, q)
            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
            p := mul(1677202110996718588342820967067443963516166, p)
            // Add `ln(2) * k * 5**18 * 2**192`.
            // forgefmt: disable-next-item
            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
            // Base conversion: mul `2**18 / 2**192`.
            r := sar(174, p)
        }
    }

    /// @dev Returns `W_0(x)`, denominated in `WAD`.
    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
    /// a.k.a. Product log function. This is an approximation of the principal branch.
    /// Note: This function is an approximation. Monotonically increasing.
    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
        // forgefmt: disable-next-item
        unchecked {
            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
            (int256 wad, int256 p) = (int256(WAD), x);
            uint256 c; // Whether we need to avoid catastrophic cancellation.
            uint256 i = 4; // Number of iterations.
            if (w <= 0x1ffffffffffff) {
                if (-0x4000000000000 <= w) {
                    i = 1; // Inputs near zero only take one step to converge.
                } else if (w <= -0x3ffffffffffffff) {
                    i = 32; // Inputs near `-1/e` take very long to converge.
                }
            } else if (uint256(w >> 63) == uint256(0)) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Inline log2 for more performance, since the range is small.
                    let v := shr(49, w)
                    let l := shl(3, lt(0xff, v))
                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                    c := gt(l, 60)
                    i := add(2, add(gt(l, 53), c))
                }
            } else {
                int256 ll = lnWad(w = lnWad(w));
                /// @solidity memory-safe-assembly
                assembly {
                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                    i := add(3, iszero(shr(68, x)))
                    c := iszero(shr(143, x))
                }
                if (c == uint256(0)) {
                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := mul(w, div(e, wad))
                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != uint256(0));
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    return w;
                }
            }
            do { // Otherwise, use Halley's for faster convergence.
                int256 e = expWad(w);
                /// @solidity memory-safe-assembly
                assembly {
                    let t := add(w, wad)
                    let s := sub(mul(w, e), mul(x, wad))
                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                }
                if (p <= w) break;
                p = w;
            } while (--i != c);
            /// @solidity memory-safe-assembly
            assembly {
                w := sub(w, sgt(w, 2))
            }
            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
            if (c == uint256(0)) return w;
            int256 t = w | 1;
            /// @solidity memory-safe-assembly
            assembly {
                x := sdiv(mul(x, wad), t)
            }
            x = (t * (wad + lnWad(x)));
            /// @solidity memory-safe-assembly
            assembly {
                w := sdiv(x, add(wad, t))
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `a * b == x * y`, with full precision.
    function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0))))
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // 512-bit multiply `[p1 p0] = x * y`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = p1 * 2**256 + p0`.

            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`.
            for {} 1 {} {
                // If overflows.
                if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.

                    /*------------------- 512 by 256 division --------------------*/

                    // Make division exact by subtracting the remainder from `[p1 p0]`.
                    let r := mulmod(x, y, d) // Compute remainder using mulmod.
                    let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                    // Make sure `z` is less than `2**256`. Also prevents `d == 0`.
                    // Placing the check here seems to give more optimal stack operations.
                    if iszero(gt(d, p1)) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    d := div(d, t) // Divide `d` by `t`, which is a power of two.
                    // Invert `d mod 2**256`
                    // Now that `d` is an odd number, it has an inverse
                    // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                    // Compute the inverse by starting with a seed that is correct
                    // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                    let inv := xor(2, mul(3, d))
                    // Now use Newton-Raphson iteration to improve the precision.
                    // Thanks to Hensel's lifting lemma, this also works in modular
                    // arithmetic, doubling the correct bits in each step.
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                    z :=
                        mul(
                            // Divide [p1 p0] by the factors of two.
                            // Shift in bits from `p1` into `p0`. For this we need
                            // to flip `t` such that it is `2**256 / t`.
                            or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                            mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                        )
                    break
                }
                z := div(z, d)
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
    /// Performs the full 512 bit calculation regardless.
    function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            let mm := mulmod(x, y, not(0))
            let p1 := sub(mm, add(z, lt(mm, z)))
            let t := and(d, sub(0, d))
            let r := mulmod(x, y, d)
            d := div(d, t)
            let inv := xor(2, mul(3, d))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            z :=
                mul(
                    or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                    mul(sub(2, mul(d, inv)), inv)
                )
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        z = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                z := add(z, 1)
                if iszero(z) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Calculates `floor(x * y / 2 ** n)` with full precision.
    /// Throws if result overflows a uint256.
    /// Credit to Philogy under MIT license:
    /// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol
    function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`.
            for {} 1 {} {
                if iszero(or(iszero(x), eq(div(z, x), y))) {
                    let k := and(n, 0xff) // `n`, cleaned.
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
                    //         |      p1     |      z     |
                    // Before: | p1_0 ¦ p1_1 | z_0  ¦ z_1 |
                    // Final:  |   0  ¦ p1_0 | p1_1 ¦ z_0 |
                    // Check that final `z` doesn't overflow by checking that p1_0 = 0.
                    if iszero(shr(k, p1)) {
                        z := add(shl(sub(256, k), p1), shr(k, z))
                        break
                    }
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
                z := shr(and(n, 0xff), z)
                break
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(z, d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(z, d))), div(z, d))
        }
    }

    /// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`.
    function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) {
        /// @solidity memory-safe-assembly
        assembly {
            let g := n
            let r := mod(a, n)
            for { let y := 1 } 1 {} {
                let q := div(g, r)
                let t := g
                g := r
                r := sub(t, mul(r, q))
                let u := x
                x := y
                y := sub(u, mul(y, q))
                if iszero(r) { break }
            }
            x := mul(eq(g, 1), add(x, mul(slt(x, 0), n)))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`. Alias for `saturatingSub`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function saturatingSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `min(2 ** 256 - 1, x + y)`.
    function saturatingAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(sub(0, lt(add(x, y), x)), add(x, y))
        }
    }

    /// @dev Returns `min(2 ** 256 - 1, x * y)`.
    function saturatingMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(sub(or(iszero(x), eq(div(mul(x, y), x), y)), 1), mul(x, y))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, address x, address y) internal pure returns (address z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `x != 0 ? x : y`, without branching.
    function coalesce(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(x)))
        }
    }

    /// @dev Returns `x != bytes32(0) ? x : y`, without branching.
    function coalesce(bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(x)))
        }
    }

    /// @dev Returns `x != address(0) ? x : y`, without branching.
    function coalesce(address x, address y) internal pure returns (address z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(shl(96, x))))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if x {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`, rounded down.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`, rounded down.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // Makeshift lookup table to nudge the approximate log2 result.
            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
            // Newton-Raphson's.
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            // Round down.
            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
            z = (1 + sqrt(x)) * 10 ** 9;
            z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
        }
        /// @solidity memory-safe-assembly
        assembly {
            z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
            z = (1 + cbrt(x)) * 10 ** 12;
            z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
        }
        /// @solidity memory-safe-assembly
        assembly {
            let p := x
            for {} 1 {} {
                if iszero(shr(229, p)) {
                    if iszero(shr(199, p)) {
                        p := mul(p, 100000000000000000) // 10 ** 17.
                        break
                    }
                    p := mul(p, 100000000) // 10 ** 8.
                    break
                }
                if iszero(shr(249, p)) { p := mul(p, 100) }
                break
            }
            let t := mulmod(mul(z, z), z, p)
            z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := 1
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for {} x { x := sub(x, 1) } { z := mul(z, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
        /// @solidity memory-safe-assembly
        assembly {
            mantissa := x
            if mantissa {
                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                    exponent := 33
                }
                if iszero(mod(mantissa, 10000000000000000000)) {
                    mantissa := div(mantissa, 10000000000000000000)
                    exponent := add(exponent, 19)
                }
                if iszero(mod(mantissa, 1000000000000)) {
                    mantissa := div(mantissa, 1000000000000)
                    exponent := add(exponent, 12)
                }
                if iszero(mod(mantissa, 1000000)) {
                    mantissa := div(mantissa, 1000000)
                    exponent := add(exponent, 6)
                }
                if iszero(mod(mantissa, 10000)) {
                    mantissa := div(mantissa, 10000)
                    exponent := add(exponent, 4)
                }
                if iszero(mod(mantissa, 100)) {
                    mantissa := div(mantissa, 100)
                    exponent := add(exponent, 2)
                }
                if iszero(mod(mantissa, 10)) {
                    mantissa := div(mantissa, 10)
                    exponent := add(exponent, 1)
                }
            }
        }
    }

    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
    /// enough to fit in the desired unsigned integer type:
    /// ```
    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
    /// ```
    function packSci(uint256 x) internal pure returns (uint256 packed) {
        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
        /// @solidity memory-safe-assembly
        assembly {
            if shr(249, x) {
                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                revert(0x1c, 0x04)
            }
            packed := or(shl(7, x), packed)
        }
    }

    /// @dev Convenience function for unpacking a packed number from `packSci`.
    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
        unchecked {
            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards zero.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        unchecked {
            z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
        internal
        pure
        returns (uint256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        unchecked {
            if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
            return a - fullMulDiv(a - b, t - begin, end - begin);
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
        internal
        pure
        returns (int256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        // forgefmt: disable-next-item
        unchecked {
            if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
                uint256(t - begin), uint256(end - begin)));
            return int256(uint256(a) - fullMulDiv(uint256(a - b),
                uint256(t - begin), uint256(end - begin)));
        }
    }

    /// @dev Returns if `x` is an even number. Some people may need this.
    function isEven(uint256 x) internal pure returns (bool) {
        return x & uint256(1) == uint256(0);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}

<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>

//SPDX-License-Identifier: Unlicense
pragma solidity ^0.8.19;

interface IBigcoin {
    function mint(address to, uint256 amt) external;

    function burn(uint256 value) external;

    function totalSupply() external view returns (uint256);

    function balanceOf(address account) external view returns (uint256);

    function transfer(address to, uint256 value) external returns (bool);

    function allowance(address owner, address spender) external view returns (uint256);

    function approve(address spender, uint256 value) external returns (bool);

    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

/**
 * @dev Miners that can be purchased in the game.
 */
struct Miner {
    uint256 minerIndex;
    uint256 id;
    uint256 x;
    uint256 y;
    uint256 hashrate;
    uint256 powerConsumption;
    uint256 cost;
    bool inProduction;
}

<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

/**
 * @dev Current player's facility.
 */
struct Facility {
    uint256 facilityIndex;
    uint256 maxMiners; // x * y
    uint256 currMiners;
    uint256 totalPowerOutput;
    uint256 currPowerOutput;
    uint256 x; // number of x quadrants
    uint256 y; // number of y qudrants
}

<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

/**
 * @dev Facilities that can be purchased in game.
 */
struct NewFacility {
    uint256 maxMiners;
    uint256 totalPowerOutput;
    uint256 cost;
    bool inProduction;
    uint256 x; // number of x quadrants
    uint256 y; // number of y qudrants
}

<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

library Errors {
    error IncorrectValue();
    error AlreadyPurchasedInitialFactory();
    error StarterMinerAlreadyAcquired();
    error FacilityAtMaxCapacity();
    error FacilityInadequatePowerOutput();
    error PlayerDoesNotOwnMiner();
    error GreatDepression();
    error MinerNotInProduction();
    error TooPoor();
    error NewFacilityNotInProduction();
    error CannotDowngradeAFacility();
    error NoRewardsPending();
    error CannotDecreaseBelowZero();
    error InvalidMinerCoordinates();
    error FacilityDimensionsInvalid();
    error NeedToInitializeFacility();
    error InvalidReferrer();
    error NonExistentMiner();
    error CantModifyStarterMiner();
    error NonExistentFacility();
    error CantModifyStarterFacility();
    error AlreadyAtMaxFacility();
    error CantBuyNewFacilityYet();
    error InvalidMinerIndex();
    error InvalidFacilityIndex();
    error InvalidFee();
    error InvalidPowerOutput();
    error MiningHasntStarted();
    error WithdrawFailed();
}

<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

library Events {
    event MiningStarted(uint256 startBlock);

    event NewMinerAdded(
        uint256 indexed minerIndex, uint256 hashRate, uint256 powerConsumption, uint256 cost, bool inProduction
    );

    event MinerProductionToggled(uint256 indexed minerIndex, bool inProduction);

    event FacilityProductionToggled(uint256 indexed facilityIndex, bool inProduction);

    event NewFacilityAdded(
        uint256 indexed facilityIndex, uint256 totalPowerOutput, uint256 cost, bool inProduction, uint256 x, uint256 y
    );

    event MinerSecondaryMarketAdded(uint256 indexed minerIndex, uint256 price);

    event InitialFacilityPurchased(address indexed player);

    event FreeMinerRedeemed(address indexed player);

    event MinerSold(
        address indexed player,
        uint256 indexed minerIndex,
        uint256 secondHandPrice,
        uint256 minerId,
        uint256 x,
        uint256 y
    );

    event MinerBought(
        address indexed player, uint256 indexed minerIndex, uint256 cost, uint256 minerId, uint256 x, uint256 y
    );

    event FacilityBought(address indexed player, uint256 indexed facilityIndex, uint256 cost);

    event PlayerHashrateIncreased(address indexed player, uint256 playerHashrate, uint256 playerPendingRewards);

    event PlayerHashrateDecreased(address indexed player, uint256 playerHashrate, uint256 playerPendingRewards);

    event RewardsClaimed(address indexed player, uint256 rewards);

    event MinerCostChanged(uint256 indexed minerIndex, uint256 newCost);

    event FacilityCostChanged(uint256 indexed facilityIndex, uint256 newCost);
}

<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):