Overview
ETH Balance
0 ETH
ETH Value
$0.00More Info
Private Name Tags
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
76986 | 28 days ago | Contract Creation | 0 ETH |
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0x287222B9...400e13397 The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Name:
LiquidityLocker
Compiler Version
v0.8.26+commit.8a97fa7a
ZkSolc Version
v1.5.7
Optimization Enabled:
Yes with Mode 3
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: AGPL-3.0 pragma solidity ^0.8.25; import "solmate/tokens/ERC721.sol"; import {Owned} from "solmate/auth/Owned.sol"; import {SafeTransferLib} from "solady/utils/SafeTransferLib.sol"; import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol"; import {INonfungiblePositionManager} from "v3-periphery/interfaces/INonfungiblePositionManager.sol"; /// @title LiquidityLocker /// @notice Locks Uniswap V3 liquidity positions while retaining the right to claim fees /// @author zefram.eth contract LiquidityLocker is Owned, ERC721TokenReceiver { using SafeTransferLib for *; using FixedPointMathLib for *; INonfungiblePositionManager public immutable positionManager; address public protocolFeeRecipient; uint96 public protocolFeeWad; mapping(uint256 id => address) public deployerOf; mapping(uint256 id => address) public token0Of; mapping(uint256 id => address) public token1Of; event Lock(uint256 indexed id, address indexed deployer); event TransferDeployership(uint256 indexed id, address indexed deployer, address indexed newDeployer); event ClaimFees( uint256 indexed id, address indexed recipient, address indexed protocolFeeRecipient, uint256 recipientFee0, uint256 recipientFee1, uint256 protocolFee0, uint256 protocolFee1 ); event SetProtocolFee(address indexed protocolFeeRecipient, uint96 indexed protocolFeeWad); constructor( INonfungiblePositionManager positionManager_, address owner_, address protocolFeeRecipient_, uint96 protocolFeeWad_ ) Owned(owner_) { positionManager = positionManager_; protocolFeeRecipient = protocolFeeRecipient_; protocolFeeWad = protocolFeeWad_; emit SetProtocolFee(protocolFeeRecipient_, protocolFeeWad_); } function claimFees(uint256 id) external virtual returns (uint256 recipientFee0, uint256 recipientFee1, uint256 protocolFee0, uint256 protocolFee1) { address recipient = deployerOf[id]; (address protocolFeeRecipient_, uint96 protocolFeeWad_) = (protocolFeeRecipient, protocolFeeWad); // claim fees (recipientFee0, recipientFee1) = positionManager.collect( INonfungiblePositionManager.CollectParams({ tokenId: id, recipient: address(this), amount0Max: type(uint128).max, amount1Max: type(uint128).max }) ); if (recipientFee0 == 0 && recipientFee1 == 0) { return (0, 0, 0, 0); } // deduct protocol fees address token0; address token1; if (recipientFee0 != 0) { token0 = token0Of[id]; protocolFee0 = recipientFee0.mulWadUp(protocolFeeWad_); recipientFee0 -= protocolFee0; } if (recipientFee1 != 0) { token1 = token1Of[id]; protocolFee1 = recipientFee1.mulWadUp(protocolFeeWad_); recipientFee1 -= protocolFee1; } // transfer recipient fees if (recipientFee0 != 0) { token0.safeTransfer(recipient, recipientFee0); } if (recipientFee1 != 0) { token1.safeTransfer(recipient, recipientFee1); } // transfer protocol fees if (protocolFee0 != 0) { token0.safeTransfer(protocolFeeRecipient_, protocolFee0); } if (protocolFee1 != 0) { token1.safeTransfer(protocolFeeRecipient_, protocolFee1); } emit ClaimFees(id, recipient, protocolFeeRecipient_, recipientFee0, recipientFee1, protocolFee0, protocolFee1); } function transferDeployership(uint256 id, address newDeployer) external virtual { address currentDeployer = deployerOf[id]; require(msg.sender == currentDeployer, "AUTH"); deployerOf[id] = newDeployer; emit TransferDeployership(id, currentDeployer, newDeployer); } function setProtocolFee(address protocolFeeRecipient_, uint96 protocolFeeWad_) external virtual onlyOwner { protocolFeeRecipient = protocolFeeRecipient_; protocolFeeWad = protocolFeeWad_; emit SetProtocolFee(protocolFeeRecipient_, protocolFeeWad_); } function onERC721Received(address, address, uint256 id, bytes calldata data) external virtual override returns (bytes4) { require(msg.sender == address(positionManager), "AUTH"); // decode data address deployer = abi.decode(data, (address)); // set deployer deployerOf[id] = deployer; (,, address token0, address token1,,,,,,,,) = positionManager.positions(id); token0Of[id] = token0; token1Of[id] = token1; emit Lock(id, deployer); return ERC721TokenReceiver.onERC721Received.selector; } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern, minimalist, and gas efficient ERC-721 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol) abstract contract ERC721 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 indexed id); event Approval(address indexed owner, address indexed spender, uint256 indexed id); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /*////////////////////////////////////////////////////////////// METADATA STORAGE/LOGIC //////////////////////////////////////////////////////////////*/ string public name; string public symbol; function tokenURI(uint256 id) public view virtual returns (string memory); /*////////////////////////////////////////////////////////////// ERC721 BALANCE/OWNER STORAGE //////////////////////////////////////////////////////////////*/ mapping(uint256 => address) internal _ownerOf; mapping(address => uint256) internal _balanceOf; function ownerOf(uint256 id) public view virtual returns (address owner) { require((owner = _ownerOf[id]) != address(0), "NOT_MINTED"); } function balanceOf(address owner) public view virtual returns (uint256) { require(owner != address(0), "ZERO_ADDRESS"); return _balanceOf[owner]; } /*////////////////////////////////////////////////////////////// ERC721 APPROVAL STORAGE //////////////////////////////////////////////////////////////*/ mapping(uint256 => address) public getApproved; mapping(address => mapping(address => bool)) public isApprovedForAll; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(string memory _name, string memory _symbol) { name = _name; symbol = _symbol; } /*////////////////////////////////////////////////////////////// ERC721 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 id) public virtual { address owner = _ownerOf[id]; require(msg.sender == owner || isApprovedForAll[owner][msg.sender], "NOT_AUTHORIZED"); getApproved[id] = spender; emit Approval(owner, spender, id); } function setApprovalForAll(address operator, bool approved) public virtual { isApprovedForAll[msg.sender][operator] = approved; emit ApprovalForAll(msg.sender, operator, approved); } function transferFrom( address from, address to, uint256 id ) public virtual { require(from == _ownerOf[id], "WRONG_FROM"); require(to != address(0), "INVALID_RECIPIENT"); require( msg.sender == from || isApprovedForAll[from][msg.sender] || msg.sender == getApproved[id], "NOT_AUTHORIZED" ); // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. unchecked { _balanceOf[from]--; _balanceOf[to]++; } _ownerOf[id] = to; delete getApproved[id]; emit Transfer(from, to, id); } function safeTransferFrom( address from, address to, uint256 id ) public virtual { transferFrom(from, to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, "") == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } function safeTransferFrom( address from, address to, uint256 id, bytes calldata data ) public virtual { transferFrom(from, to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, data) == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } /*////////////////////////////////////////////////////////////// ERC165 LOGIC //////////////////////////////////////////////////////////////*/ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165 interfaceId == 0x80ac58cd || // ERC165 Interface ID for ERC721 interfaceId == 0x5b5e139f; // ERC165 Interface ID for ERC721Metadata } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 id) internal virtual { require(to != address(0), "INVALID_RECIPIENT"); require(_ownerOf[id] == address(0), "ALREADY_MINTED"); // Counter overflow is incredibly unrealistic. unchecked { _balanceOf[to]++; } _ownerOf[id] = to; emit Transfer(address(0), to, id); } function _burn(uint256 id) internal virtual { address owner = _ownerOf[id]; require(owner != address(0), "NOT_MINTED"); // Ownership check above ensures no underflow. unchecked { _balanceOf[owner]--; } delete _ownerOf[id]; delete getApproved[id]; emit Transfer(owner, address(0), id); } /*////////////////////////////////////////////////////////////// INTERNAL SAFE MINT LOGIC //////////////////////////////////////////////////////////////*/ function _safeMint(address to, uint256 id) internal virtual { _mint(to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, "") == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } function _safeMint( address to, uint256 id, bytes memory data ) internal virtual { _mint(to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, data) == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } } /// @notice A generic interface for a contract which properly accepts ERC721 tokens. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol) abstract contract ERC721TokenReceiver { function onERC721Received( address, address, uint256, bytes calldata ) external virtual returns (bytes4) { return ERC721TokenReceiver.onERC721Received.selector; } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Simple single owner authorization mixin. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol) abstract contract Owned { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event OwnershipTransferred(address indexed user, address indexed newOwner); /*////////////////////////////////////////////////////////////// OWNERSHIP STORAGE //////////////////////////////////////////////////////////////*/ address public owner; modifier onlyOwner() virtual { require(msg.sender == owner, "UNAUTHORIZED"); _; } /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(address _owner) { owner = _owner; emit OwnershipTransferred(address(0), _owner); } /*////////////////////////////////////////////////////////////// OWNERSHIP LOGIC //////////////////////////////////////////////////////////////*/ function transferOwnership(address newOwner) public virtual onlyOwner { owner = newOwner; emit OwnershipTransferred(msg.sender, newOwner); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @author Permit2 operations from (https://github.com/Uniswap/permit2/blob/main/src/libraries/Permit2Lib.sol) /// /// @dev Note: /// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection. /// - For ERC20s, this implementation won't check that a token has code, /// responsibility is delegated to the caller. library SafeTransferLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The ETH transfer has failed. error ETHTransferFailed(); /// @dev The ERC20 `transferFrom` has failed. error TransferFromFailed(); /// @dev The ERC20 `transfer` has failed. error TransferFailed(); /// @dev The ERC20 `approve` has failed. error ApproveFailed(); /// @dev The Permit2 operation has failed. error Permit2Failed(); /// @dev The Permit2 amount must be less than `2**160 - 1`. error Permit2AmountOverflow(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes. uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300; /// @dev Suggested gas stipend for contract receiving ETH to perform a few /// storage reads and writes, but low enough to prevent griefing. uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000; /// @dev The unique EIP-712 domain domain separator for the DAI token contract. bytes32 internal constant DAI_DOMAIN_SEPARATOR = 0xdbb8cf42e1ecb028be3f3dbc922e1d878b963f411dc388ced501601c60f7c6f7; /// @dev The address for the WETH9 contract on Ethereum mainnet. address internal constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; /// @dev The canonical Permit2 address. /// [Github](https://github.com/Uniswap/permit2) /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3) address internal constant PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ETH OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants. // // The regular variants: // - Forwards all remaining gas to the target. // - Reverts if the target reverts. // - Reverts if the current contract has insufficient balance. // // The force variants: // - Forwards with an optional gas stipend // (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases). // - If the target reverts, or if the gas stipend is exhausted, // creates a temporary contract to force send the ETH via `SELFDESTRUCT`. // Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758. // - Reverts if the current contract has insufficient balance. // // The try variants: // - Forwards with a mandatory gas stipend. // - Instead of reverting, returns whether the transfer succeeded. /// @dev Sends `amount` (in wei) ETH to `to`. function safeTransferETH(address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } } } /// @dev Sends all the ETH in the current contract to `to`. function safeTransferAllETH(address to) internal { /// @solidity memory-safe-assembly assembly { // Transfer all the ETH and check if it succeeded or not. if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } } } /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`. function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal { /// @solidity memory-safe-assembly assembly { if lt(selfbalance(), amount) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`. function forceSafeTransferAllETH(address to, uint256 gasStipend) internal { /// @solidity memory-safe-assembly assembly { if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`. function forceSafeTransferETH(address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { if lt(selfbalance(), amount) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`. function forceSafeTransferAllETH(address to) internal { /// @solidity memory-safe-assembly assembly { // forgefmt: disable-next-item if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`. function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00) } } /// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`. function trySafeTransferAllETH(address to, uint256 gasStipend) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC20 OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Sends `amount` of ERC20 `token` from `from` to `to`. /// Reverts upon failure. /// /// The `from` account must have at least `amount` approved for /// the current contract to manage. function safeTransferFrom(address token, address from, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, amount) // Store the `amount` argument. mstore(0x40, to) // Store the `to` argument. mstore(0x2c, shl(96, from)) // Store the `from` argument. mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) ) ) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Sends `amount` of ERC20 `token` from `from` to `to`. /// /// The `from` account must have at least `amount` approved for the current contract to manage. function trySafeTransferFrom(address token, address from, address to, uint256 amount) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, amount) // Store the `amount` argument. mstore(0x40, to) // Store the `to` argument. mstore(0x2c, shl(96, from)) // Store the `from` argument. mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`. success := and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) ) mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Sends all of ERC20 `token` from `from` to `to`. /// Reverts upon failure. /// /// The `from` account must have their entire balance approved for the current contract to manage. function safeTransferAllFrom(address token, address from, address to) internal returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x40, to) // Store the `to` argument. mstore(0x2c, shl(96, from)) // Store the `from` argument. mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`. // Read the balance, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20) ) ) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`. amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) ) ) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`. /// Reverts upon failure. function safeTransfer(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sends all of ERC20 `token` from the current contract to `to`. /// Reverts upon failure. function safeTransferAll(address token, address to) internal returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`. mstore(0x20, address()) // Store the address of the current contract. // Read the balance, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20) ) ) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } mstore(0x14, to) // Store the `to` argument. amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it. mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract. /// Reverts upon failure. function safeApprove(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. // Perform the approval, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`. revert(0x1c, 0x04) } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract. /// If the initial attempt to approve fails, attempts to reset the approved amount to zero, /// then retries the approval again (some tokens, e.g. USDT, requires this). /// Reverts upon failure. function safeApproveWithRetry(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. // Perform the approval, retrying upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x34, 0) // Store 0 for the `amount`. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval. mstore(0x34, amount) // Store back the original `amount`. // Retry the approval, reverting upon failure. if iszero( and( or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`. revert(0x1c, 0x04) } } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Returns the amount of ERC20 `token` owned by `account`. /// Returns zero if the `token` does not exist. function balanceOf(address token, address account) internal view returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { mstore(0x14, account) // Store the `account` argument. mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`. amount := mul( // The arguments of `mul` are evaluated from right to left. mload(0x20), and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20) ) ) } } /// @dev Sends `amount` of ERC20 `token` from `from` to `to`. /// If the initial attempt fails, try to use Permit2 to transfer the token. /// Reverts upon failure. /// /// The `from` account must have at least `amount` approved for the current contract to manage. function safeTransferFrom2(address token, address from, address to, uint256 amount) internal { if (!trySafeTransferFrom(token, from, to, amount)) { permit2TransferFrom(token, from, to, amount); } } /// @dev Sends `amount` of ERC20 `token` from `from` to `to` via Permit2. /// Reverts upon failure. function permit2TransferFrom(address token, address from, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) mstore(add(m, 0x74), shr(96, shl(96, token))) mstore(add(m, 0x54), amount) mstore(add(m, 0x34), to) mstore(add(m, 0x20), shl(96, from)) // `transferFrom(address,address,uint160,address)`. mstore(m, 0x36c78516000000000000000000000000) let p := PERMIT2 let exists := eq(chainid(), 1) if iszero(exists) { exists := iszero(iszero(extcodesize(p))) } if iszero(and(call(gas(), p, 0, add(m, 0x10), 0x84, codesize(), 0x00), exists)) { mstore(0x00, 0x7939f4248757f0fd) // `TransferFromFailed()` or `Permit2AmountOverflow()`. revert(add(0x18, shl(2, iszero(iszero(shr(160, amount))))), 0x04) } } } /// @dev Permit a user to spend a given amount of /// another user's tokens via native EIP-2612 permit if possible, falling /// back to Permit2 if native permit fails or is not implemented on the token. function permit2( address token, address owner, address spender, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { bool success; /// @solidity memory-safe-assembly assembly { for {} shl(96, xor(token, WETH9)) {} { mstore(0x00, 0x3644e515) // `DOMAIN_SEPARATOR()`. if iszero( and( // The arguments of `and` are evaluated from right to left. lt(iszero(mload(0x00)), eq(returndatasize(), 0x20)), // Returns 1 non-zero word. // Gas stipend to limit gas burn for tokens that don't refund gas when // an non-existing function is called. 5K should be enough for a SLOAD. staticcall(5000, token, 0x1c, 0x04, 0x00, 0x20) ) ) { break } // After here, we can be sure that token is a contract. let m := mload(0x40) mstore(add(m, 0x34), spender) mstore(add(m, 0x20), shl(96, owner)) mstore(add(m, 0x74), deadline) if eq(mload(0x00), DAI_DOMAIN_SEPARATOR) { mstore(0x14, owner) mstore(0x00, 0x7ecebe00000000000000000000000000) // `nonces(address)`. mstore(add(m, 0x94), staticcall(gas(), token, 0x10, 0x24, add(m, 0x54), 0x20)) mstore(m, 0x8fcbaf0c000000000000000000000000) // `IDAIPermit.permit`. // `nonces` is already at `add(m, 0x54)`. // `1` is already stored at `add(m, 0x94)`. mstore(add(m, 0xb4), and(0xff, v)) mstore(add(m, 0xd4), r) mstore(add(m, 0xf4), s) success := call(gas(), token, 0, add(m, 0x10), 0x104, codesize(), 0x00) break } mstore(m, 0xd505accf000000000000000000000000) // `IERC20Permit.permit`. mstore(add(m, 0x54), amount) mstore(add(m, 0x94), and(0xff, v)) mstore(add(m, 0xb4), r) mstore(add(m, 0xd4), s) success := call(gas(), token, 0, add(m, 0x10), 0xe4, codesize(), 0x00) break } } if (!success) simplePermit2(token, owner, spender, amount, deadline, v, r, s); } /// @dev Simple permit on the Permit2 contract. function simplePermit2( address token, address owner, address spender, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) mstore(m, 0x927da105) // `allowance(address,address,address)`. { let addressMask := shr(96, not(0)) mstore(add(m, 0x20), and(addressMask, owner)) mstore(add(m, 0x40), and(addressMask, token)) mstore(add(m, 0x60), and(addressMask, spender)) mstore(add(m, 0xc0), and(addressMask, spender)) } let p := mul(PERMIT2, iszero(shr(160, amount))) if iszero( and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x5f), // Returns 3 words: `amount`, `expiration`, `nonce`. staticcall(gas(), p, add(m, 0x1c), 0x64, add(m, 0x60), 0x60) ) ) { mstore(0x00, 0x6b836e6b8757f0fd) // `Permit2Failed()` or `Permit2AmountOverflow()`. revert(add(0x18, shl(2, iszero(p))), 0x04) } mstore(m, 0x2b67b570) // `Permit2.permit` (PermitSingle variant). // `owner` is already `add(m, 0x20)`. // `token` is already at `add(m, 0x40)`. mstore(add(m, 0x60), amount) mstore(add(m, 0x80), 0xffffffffffff) // `expiration = type(uint48).max`. // `nonce` is already at `add(m, 0xa0)`. // `spender` is already at `add(m, 0xc0)`. mstore(add(m, 0xe0), deadline) mstore(add(m, 0x100), 0x100) // `signature` offset. mstore(add(m, 0x120), 0x41) // `signature` length. mstore(add(m, 0x140), r) mstore(add(m, 0x160), s) mstore(add(m, 0x180), shl(248, v)) if iszero(call(gas(), p, 0, add(m, 0x1c), 0x184, codesize(), 0x00)) { mstore(0x00, 0x6b836e6b) // `Permit2Failed()`. revert(0x1c, 0x04) } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The operation failed, as the output exceeds the maximum value of uint256. error ExpOverflow(); /// @dev The operation failed, as the output exceeds the maximum value of uint256. error FactorialOverflow(); /// @dev The operation failed, due to an overflow. error RPowOverflow(); /// @dev The mantissa is too big to fit. error MantissaOverflow(); /// @dev The operation failed, due to an multiplication overflow. error MulWadFailed(); /// @dev The operation failed, due to an multiplication overflow. error SMulWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error DivWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error SDivWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error MulDivFailed(); /// @dev The division failed, as the denominator is zero. error DivFailed(); /// @dev The full precision multiply-divide operation failed, either due /// to the result being larger than 256 bits, or a division by a zero. error FullMulDivFailed(); /// @dev The output is undefined, as the input is less-than-or-equal to zero. error LnWadUndefined(); /// @dev The input outside the acceptable domain. error OutOfDomain(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The scalar of ETH and most ERC20s. uint256 internal constant WAD = 1e18; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* SIMPLIFIED FIXED POINT OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Equivalent to `(x * y) / WAD` rounded down. function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { mstore(0x00, 0xbac65e5b) // `MulWadFailed()`. revert(0x1c, 0x04) } z := div(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down. function sMulWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`. if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) { mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`. revert(0x1c, 0x04) } z := sdiv(z, WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks. function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks. function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded up. function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { mstore(0x00, 0xbac65e5b) // `MulWadFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD)) } } /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks. function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD)) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { mstore(0x00, 0x7c5f487d) // `DivWadFailed()`. revert(0x1c, 0x04) } z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. function sDivWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, WAD) // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`. if iszero(and(iszero(iszero(y)), eq(sdiv(z, WAD), x))) { mstore(0x00, 0x5c43740d) // `SDivWadFailed()`. revert(0x1c, 0x04) } z := sdiv(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks. function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks. function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded up. function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { mstore(0x00, 0x7c5f487d) // `DivWadFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks. function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Equivalent to `x` to the power of `y`. /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`. /// Note: This function is an approximation. function powWad(int256 x, int256 y) internal pure returns (int256) { // Using `ln(x)` means `x` must be greater than 0. return expWad((lnWad(x) * y) / int256(WAD)); } /// @dev Returns `exp(x)`, denominated in `WAD`. /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln /// Note: This function is an approximation. Monotonically increasing. function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is less than 0.5 we return zero. // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`. if (x <= -41446531673892822313) return r; /// @solidity memory-safe-assembly assembly { // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`. if iszero(slt(x, 135305999368893231589)) { mstore(0x00, 0xa37bfec9) // `ExpOverflow()`. revert(0x1c, 0x04) } } // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96` // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5 ** 18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96; x = x - k * 54916777467707473351141471128; // `k` is in the range `[-61, 195]`. // Evaluate using a (6, 7)-term rational approximation. // `p` is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave `p` in `2**192` basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; /// @solidity memory-safe-assembly assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already `2**96` too large. r := sdiv(p, q) } // r should be in the range `(0.09, 0.25) * 2**96`. // We now need to multiply r by: // - The scale factor `s ≈ 6.031367120`. // - The `2**k` factor from the range reduction. // - The `1e18 / 2**96` factor for base conversion. // We do this all at once, with an intermediate result in `2**213` // basis, so the final right shift is always by a positive amount. r = int256( (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k) ); } } /// @dev Returns `ln(x)`, denominated in `WAD`. /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln /// Note: This function is an approximation. Monotonically increasing. function lnWad(int256 x) internal pure returns (int256 r) { /// @solidity memory-safe-assembly assembly { // We want to convert `x` from `10**18` fixed point to `2**96` fixed point. // We do this by multiplying by `2**96 / 10**18`. But since // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here // and add `ln(2**96 / 10**18)` at the end. // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`. r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // We place the check here for more optimal stack operations. if iszero(sgt(x, 0)) { mstore(0x00, 0x1615e638) // `LnWadUndefined()`. revert(0x1c, 0x04) } // forgefmt: disable-next-item r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)), 0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff)) // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) x := shr(159, shl(r, x)) // Evaluate using a (8, 8)-term rational approximation. // `p` is made monic, we will multiply by a scale factor later. // forgefmt: disable-next-item let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir. sar(96, mul(add(43456485725739037958740375743393, sar(96, mul(add(24828157081833163892658089445524, sar(96, mul(add(3273285459638523848632254066296, x), x))), x))), x)), 11111509109440967052023855526967) p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857) p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526) p := sub(mul(p, x), shl(96, 795164235651350426258249787498)) // We leave `p` in `2**192` basis so we don't need to scale it back up for the division. // `q` is monic by convention. let q := add(5573035233440673466300451813936, x) q := add(71694874799317883764090561454958, sar(96, mul(x, q))) q := add(283447036172924575727196451306956, sar(96, mul(x, q))) q := add(401686690394027663651624208769553, sar(96, mul(x, q))) q := add(204048457590392012362485061816622, sar(96, mul(x, q))) q := add(31853899698501571402653359427138, sar(96, mul(x, q))) q := add(909429971244387300277376558375, sar(96, mul(x, q))) // `p / q` is in the range `(0, 0.125) * 2**96`. // Finalization, we need to: // - Multiply by the scale factor `s = 5.549…`. // - Add `ln(2**96 / 10**18)`. // - Add `k * ln(2)`. // - Multiply by `10**18 / 2**96 = 5**18 >> 78`. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already `2**96` too large. p := sdiv(p, q) // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`. p := mul(1677202110996718588342820967067443963516166, p) // Add `ln(2) * k * 5**18 * 2**192`. // forgefmt: disable-next-item p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p) // Add `ln(2**96 / 10**18) * 5**18 * 2**192`. p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p) // Base conversion: mul `2**18 / 2**192`. r := sar(174, p) } } /// @dev Returns `W_0(x)`, denominated in `WAD`. /// See: https://en.wikipedia.org/wiki/Lambert_W_function /// a.k.a. Product log function. This is an approximation of the principal branch. /// Note: This function is an approximation. Monotonically increasing. function lambertW0Wad(int256 x) internal pure returns (int256 w) { // forgefmt: disable-next-item unchecked { if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`. int256 wad = int256(WAD); int256 p = x; uint256 c; // Whether we need to avoid catastrophic cancellation. uint256 i = 4; // Number of iterations. if (w <= 0x1ffffffffffff) { if (-0x4000000000000 <= w) { i = 1; // Inputs near zero only take one step to converge. } else if (w <= -0x3ffffffffffffff) { i = 32; // Inputs near `-1/e` take very long to converge. } } else if (uint256(w >> 63) == uint256(0)) { /// @solidity memory-safe-assembly assembly { // Inline log2 for more performance, since the range is small. let v := shr(49, w) let l := shl(3, lt(0xff, v)) l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)), 0x0706060506020504060203020504030106050205030304010505030400000000)), 49) w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13)) c := gt(l, 60) i := add(2, add(gt(l, 53), c)) } } else { int256 ll = lnWad(w = lnWad(w)); /// @solidity memory-safe-assembly assembly { // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`. w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll)) i := add(3, iszero(shr(68, x))) c := iszero(shr(143, x)) } if (c == uint256(0)) { do { // If `x` is big, use Newton's so that intermediate values won't overflow. int256 e = expWad(w); /// @solidity memory-safe-assembly assembly { let t := mul(w, div(e, wad)) w := sub(w, sdiv(sub(t, x), div(add(e, t), wad))) } if (p <= w) break; p = w; } while (--i != uint256(0)); /// @solidity memory-safe-assembly assembly { w := sub(w, sgt(w, 2)) } return w; } } do { // Otherwise, use Halley's for faster convergence. int256 e = expWad(w); /// @solidity memory-safe-assembly assembly { let t := add(w, wad) let s := sub(mul(w, e), mul(x, wad)) w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t))))) } if (p <= w) break; p = w; } while (--i != c); /// @solidity memory-safe-assembly assembly { w := sub(w, sgt(w, 2)) } // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation. if (c == uint256(0)) return w; int256 t = w | 1; /// @solidity memory-safe-assembly assembly { x := sdiv(mul(x, wad), t) } x = (t * (wad + lnWad(x))); /// @solidity memory-safe-assembly assembly { w := sdiv(x, add(wad, t)) } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* GENERAL NUMBER UTILITIES */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Calculates `floor(x * y / d)` with full precision. /// Throws if result overflows a uint256 or when `d` is zero. /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { // 512-bit multiply `[p1 p0] = x * y`. // Compute the product mod `2**256` and mod `2**256 - 1` // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that `product = p1 * 2**256 + p0`. // Temporarily use `result` as `p0` to save gas. result := mul(x, y) // Lower 256 bits of `x * y`. for {} 1 {} { // If overflows. if iszero(mul(or(iszero(x), eq(div(result, x), y)), d)) { let mm := mulmod(x, y, not(0)) let p1 := sub(mm, add(result, lt(mm, result))) // Upper 256 bits of `x * y`. /*------------------- 512 by 256 division --------------------*/ // Make division exact by subtracting the remainder from `[p1 p0]`. let r := mulmod(x, y, d) // Compute remainder using mulmod. let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`. // Make sure the result is less than `2**256`. Also prevents `d == 0`. // Placing the check here seems to give more optimal stack operations. if iszero(gt(d, p1)) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } d := div(d, t) // Divide `d` by `t`, which is a power of two. // Invert `d mod 2**256` // Now that `d` is an odd number, it has an inverse // modulo `2**256` such that `d * inv = 1 mod 2**256`. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, `d * inv = 1 mod 2**4`. let inv := xor(2, mul(3, d)) // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128 result := mul( // Divide [p1 p0] by the factors of two. // Shift in bits from `p1` into `p0`. For this we need // to flip `t` such that it is `2**256 / t`. or( mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)), div(sub(result, r), t) ), mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256 ) break } result := div(result, d) break } } } /// @dev Calculates `floor(x * y / d)` with full precision. /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits. /// Performs the full 512 bit calculation regardless. function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { result := mul(x, y) let mm := mulmod(x, y, not(0)) let p1 := sub(mm, add(result, lt(mm, result))) let t := and(d, sub(0, d)) let r := mulmod(x, y, d) d := div(d, t) let inv := xor(2, mul(3, d)) inv := mul(inv, sub(2, mul(d, inv))) inv := mul(inv, sub(2, mul(d, inv))) inv := mul(inv, sub(2, mul(d, inv))) inv := mul(inv, sub(2, mul(d, inv))) inv := mul(inv, sub(2, mul(d, inv))) result := mul( or(mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)), div(sub(result, r), t)), mul(sub(2, mul(d, inv)), inv) ) } } /// @dev Calculates `floor(x * y / d)` with full precision, rounded up. /// Throws if result overflows a uint256 or when `d` is zero. /// Credit to Uniswap-v3-core under MIT license: /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) { result = fullMulDiv(x, y, d); /// @solidity memory-safe-assembly assembly { if mulmod(x, y, d) { result := add(result, 1) if iszero(result) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } } } } /// @dev Returns `floor(x * y / d)`. /// Reverts if `x * y` overflows, or `d` is zero. function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`. if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) { mstore(0x00, 0xad251c27) // `MulDivFailed()`. revert(0x1c, 0x04) } z := div(z, d) } } /// @dev Returns `ceil(x * y / d)`. /// Reverts if `x * y` overflows, or `d` is zero. function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`. if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) { mstore(0x00, 0xad251c27) // `MulDivFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(z, d))), div(z, d)) } } /// @dev Returns `ceil(x / d)`. /// Reverts if `d` is zero. function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { if iszero(d) { mstore(0x00, 0x65244e4e) // `DivFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(x, d))), div(x, d)) } } /// @dev Returns `max(0, x - y)`. function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(gt(x, y), sub(x, y)) } } /// @dev Returns `condition ? x : y`, without branching. function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { result := xor(x, mul(xor(x, y), iszero(condition))) } } /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`. /// Reverts if the computation overflows. function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`. if x { z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x` let half := shr(1, b) // Divide `b` by 2. // Divide `y` by 2 every iteration. for { y := shr(1, y) } y { y := shr(1, y) } { let xx := mul(x, x) // Store x squared. let xxRound := add(xx, half) // Round to the nearest number. // Revert if `xx + half` overflowed, or if `x ** 2` overflows. if or(lt(xxRound, xx), shr(128, x)) { mstore(0x00, 0x49f7642b) // `RPowOverflow()`. revert(0x1c, 0x04) } x := div(xxRound, b) // Set `x` to scaled `xxRound`. // If `y` is odd: if and(y, 1) { let zx := mul(z, x) // Compute `z * x`. let zxRound := add(zx, half) // Round to the nearest number. // If `z * x` overflowed or `zx + half` overflowed: if or(xor(div(zx, x), z), lt(zxRound, zx)) { // Revert if `x` is non-zero. if x { mstore(0x00, 0x49f7642b) // `RPowOverflow()`. revert(0x1c, 0x04) } } z := div(zxRound, b) // Return properly scaled `zxRound`. } } } } } /// @dev Returns the square root of `x`, rounded down. function sqrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // Let `y = x / 2**r`. We check `y >= 2**(k + 8)` // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`. let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffffff, shr(r, x)))) z := shl(shr(1, r), z) // Goal was to get `z*z*y` within a small factor of `x`. More iterations could // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`. // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small. // That's not possible if `x < 256` but we can just verify those cases exhaustively. // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`. // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`. // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps. // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)` // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`, // with largest error when `s = 1` and when `s = 256` or `1/256`. // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`. // Then we can estimate `sqrt(y)` using // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`. // There is no overflow risk here since `y < 2**136` after the first branch above. z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If `x+1` is a perfect square, the Babylonian method cycles between // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division z := sub(z, lt(div(x, z), z)) } } /// @dev Returns the cube root of `x`, rounded down. /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license: /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy /// Formally verified by xuwinnie: /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf function cbrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // Makeshift lookup table to nudge the approximate log2 result. z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3))) // Newton-Raphson's. z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) // Round down. z := sub(z, lt(div(x, mul(z, z)), z)) } } /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down. function sqrtWad(uint256 x) internal pure returns (uint256 z) { unchecked { if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18); z = (1 + sqrt(x)) * 10 ** 9; z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1; } /// @solidity memory-safe-assembly assembly { z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down. } } /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down. /// Formally verified by xuwinnie: /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf function cbrtWad(uint256 x) internal pure returns (uint256 z) { unchecked { if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36); z = (1 + cbrt(x)) * 10 ** 12; z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3; } /// @solidity memory-safe-assembly assembly { let p := x for {} 1 {} { if iszero(shr(229, p)) { if iszero(shr(199, p)) { p := mul(p, 100000000000000000) // 10 ** 17. break } p := mul(p, 100000000) // 10 ** 8. break } if iszero(shr(249, p)) { p := mul(p, 100) } break } let t := mulmod(mul(z, z), z, p) z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down. } } /// @dev Returns the factorial of `x`. function factorial(uint256 x) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { result := 1 if iszero(lt(x, 58)) { mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`. revert(0x1c, 0x04) } for {} x { x := sub(x, 1) } { result := mul(result, x) } } } /// @dev Returns the log2 of `x`. /// Equivalent to computing the index of the most significant bit (MSB) of `x`. /// Returns 0 if `x` is zero. function log2(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)), 0x0706060506020504060203020504030106050205030304010505030400000000)) } } /// @dev Returns the log2 of `x`, rounded up. /// Returns 0 if `x` is zero. function log2Up(uint256 x) internal pure returns (uint256 r) { r = log2(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(shl(r, 1), x)) } } /// @dev Returns the log10 of `x`. /// Returns 0 if `x` is zero. function log10(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { if iszero(lt(x, 100000000000000000000000000000000000000)) { x := div(x, 100000000000000000000000000000000000000) r := 38 } if iszero(lt(x, 100000000000000000000)) { x := div(x, 100000000000000000000) r := add(r, 20) } if iszero(lt(x, 10000000000)) { x := div(x, 10000000000) r := add(r, 10) } if iszero(lt(x, 100000)) { x := div(x, 100000) r := add(r, 5) } r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999))))) } } /// @dev Returns the log10 of `x`, rounded up. /// Returns 0 if `x` is zero. function log10Up(uint256 x) internal pure returns (uint256 r) { r = log10(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(exp(10, r), x)) } } /// @dev Returns the log256 of `x`. /// Returns 0 if `x` is zero. function log256(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(shr(3, r), lt(0xff, shr(r, x))) } } /// @dev Returns the log256 of `x`, rounded up. /// Returns 0 if `x` is zero. function log256Up(uint256 x) internal pure returns (uint256 r) { r = log256(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(shl(shl(3, r), 1), x)) } } /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`. /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent). function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) { /// @solidity memory-safe-assembly assembly { mantissa := x if mantissa { if iszero(mod(mantissa, 1000000000000000000000000000000000)) { mantissa := div(mantissa, 1000000000000000000000000000000000) exponent := 33 } if iszero(mod(mantissa, 10000000000000000000)) { mantissa := div(mantissa, 10000000000000000000) exponent := add(exponent, 19) } if iszero(mod(mantissa, 1000000000000)) { mantissa := div(mantissa, 1000000000000) exponent := add(exponent, 12) } if iszero(mod(mantissa, 1000000)) { mantissa := div(mantissa, 1000000) exponent := add(exponent, 6) } if iszero(mod(mantissa, 10000)) { mantissa := div(mantissa, 10000) exponent := add(exponent, 4) } if iszero(mod(mantissa, 100)) { mantissa := div(mantissa, 100) exponent := add(exponent, 2) } if iszero(mod(mantissa, 10)) { mantissa := div(mantissa, 10) exponent := add(exponent, 1) } } } } /// @dev Convenience function for packing `x` into a smaller number using `sci`. /// The `mantissa` will be in bits [7..255] (the upper 249 bits). /// The `exponent` will be in bits [0..6] (the lower 7 bits). /// Use `SafeCastLib` to safely ensure that the `packed` number is small /// enough to fit in the desired unsigned integer type: /// ``` /// uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether)); /// ``` function packSci(uint256 x) internal pure returns (uint256 packed) { (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`. /// @solidity memory-safe-assembly assembly { if shr(249, x) { mstore(0x00, 0xce30380c) // `MantissaOverflow()`. revert(0x1c, 0x04) } packed := or(shl(7, x), packed) } } /// @dev Convenience function for unpacking a packed number from `packSci`. function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) { unchecked { unpacked = (packed >> 7) * 10 ** (packed & 0x7f); } } /// @dev Returns the average of `x` and `y`. Rounds towards zero. function avg(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = (x & y) + ((x ^ y) >> 1); } } /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity. function avg(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = (x >> 1) + (y >> 1) + (x & y & 1); } } /// @dev Returns the absolute value of `x`. function abs(int256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(sar(255, x), add(sar(255, x), x)) } } /// @dev Returns the absolute distance between `x` and `y`. function dist(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(mul(xor(sub(y, x), sub(x, y)), gt(x, y)), sub(y, x)) } } /// @dev Returns the absolute distance between `x` and `y`. function dist(int256 x, int256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(mul(xor(sub(y, x), sub(x, y)), sgt(x, y)), sub(y, x)) } } /// @dev Returns the minimum of `x` and `y`. function min(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), lt(y, x))) } } /// @dev Returns the minimum of `x` and `y`. function min(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), slt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), gt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), sgt(y, x))) } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(uint256 x, uint256 minValue, uint256 maxValue) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, minValue), gt(minValue, x))) z := xor(z, mul(xor(z, maxValue), lt(maxValue, z))) } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, minValue), sgt(minValue, x))) z := xor(z, mul(xor(z, maxValue), slt(maxValue, z))) } } /// @dev Returns greatest common divisor of `x` and `y`. function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { for { z := x } y {} { let t := y y := mod(z, y) z := t } } } /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`, /// with `t` clamped between `begin` and `end` (inclusive). /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`). /// If `begins == end`, returns `t <= begin ? a : b`. function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end) internal pure returns (uint256) { if (begin > end) { t = ~t; begin = ~begin; end = ~end; } if (t <= begin) return a; if (t >= end) return b; unchecked { if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin); return a - fullMulDiv(a - b, t - begin, end - begin); } } /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`. /// with `t` clamped between `begin` and `end` (inclusive). /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`). /// If `begins == end`, returns `t <= begin ? a : b`. function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end) internal pure returns (int256) { if (begin > end) { t = int256(~uint256(t)); begin = int256(~uint256(begin)); end = int256(~uint256(end)); } if (t <= begin) return a; if (t >= end) return b; // forgefmt: disable-next-item unchecked { if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b) - uint256(a), uint256(t) - uint256(begin), uint256(end) - uint256(begin))); return int256(uint256(a) - fullMulDiv(uint256(a) - uint256(b), uint256(t) - uint256(begin), uint256(end) - uint256(begin))); } } /// @dev Returns if `x` is an even number. Some people may need this. function isEven(uint256 x) internal pure returns (bool) { return x & uint256(1) == uint256(0); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RAW NUMBER OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns `x + y`, without checking for overflow. function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x + y; } } /// @dev Returns `x + y`, without checking for overflow. function rawAdd(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x + y; } } /// @dev Returns `x - y`, without checking for underflow. function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x - y; } } /// @dev Returns `x - y`, without checking for underflow. function rawSub(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x - y; } } /// @dev Returns `x * y`, without checking for overflow. function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x * y; } } /// @dev Returns `x * y`, without checking for overflow. function rawMul(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x * y; } } /// @dev Returns `x / y`, returning 0 if `y` is zero. function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(x, y) } } /// @dev Returns `x / y`, returning 0 if `y` is zero. function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mod(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function rawSMod(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := smod(x, y) } } /// @dev Returns `(x + y) % d`, return 0 if `d` if zero. function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := addmod(x, y, d) } } /// @dev Returns `(x * y) % d`, return 0 if `d` if zero. function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mulmod(x, y, d) } } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; pragma abicoder v2; import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol'; import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol'; import './IPoolInitializer.sol'; import './IERC721Permit.sol'; import './IPeripheryPayments.sol'; import './IPeripheryImmutableState.sol'; import '../libraries/PoolAddress.sol'; /// @title Non-fungible token for positions /// @notice Wraps Uniswap V3 positions in a non-fungible token interface which allows for them to be transferred /// and authorized. interface INonfungiblePositionManager is IPoolInitializer, IPeripheryPayments, IPeripheryImmutableState, IERC721Metadata, IERC721Enumerable, IERC721Permit { /// @notice Emitted when liquidity is increased for a position NFT /// @dev Also emitted when a token is minted /// @param tokenId The ID of the token for which liquidity was increased /// @param liquidity The amount by which liquidity for the NFT position was increased /// @param amount0 The amount of token0 that was paid for the increase in liquidity /// @param amount1 The amount of token1 that was paid for the increase in liquidity event IncreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1); /// @notice Emitted when liquidity is decreased for a position NFT /// @param tokenId The ID of the token for which liquidity was decreased /// @param liquidity The amount by which liquidity for the NFT position was decreased /// @param amount0 The amount of token0 that was accounted for the decrease in liquidity /// @param amount1 The amount of token1 that was accounted for the decrease in liquidity event DecreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1); /// @notice Emitted when tokens are collected for a position NFT /// @dev The amounts reported may not be exactly equivalent to the amounts transferred, due to rounding behavior /// @param tokenId The ID of the token for which underlying tokens were collected /// @param recipient The address of the account that received the collected tokens /// @param amount0 The amount of token0 owed to the position that was collected /// @param amount1 The amount of token1 owed to the position that was collected event Collect(uint256 indexed tokenId, address recipient, uint256 amount0, uint256 amount1); /// @notice Returns the position information associated with a given token ID. /// @dev Throws if the token ID is not valid. /// @param tokenId The ID of the token that represents the position /// @return nonce The nonce for permits /// @return operator The address that is approved for spending /// @return token0 The address of the token0 for a specific pool /// @return token1 The address of the token1 for a specific pool /// @return fee The fee associated with the pool /// @return tickLower The lower end of the tick range for the position /// @return tickUpper The higher end of the tick range for the position /// @return liquidity The liquidity of the position /// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position /// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position /// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation /// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation function positions(uint256 tokenId) external view returns ( uint96 nonce, address operator, address token0, address token1, uint24 fee, int24 tickLower, int24 tickUpper, uint128 liquidity, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, uint128 tokensOwed0, uint128 tokensOwed1 ); struct MintParams { address token0; address token1; uint24 fee; int24 tickLower; int24 tickUpper; uint256 amount0Desired; uint256 amount1Desired; uint256 amount0Min; uint256 amount1Min; address recipient; uint256 deadline; } /// @notice Creates a new position wrapped in a NFT /// @dev Call this when the pool does exist and is initialized. Note that if the pool is created but not initialized /// a method does not exist, i.e. the pool is assumed to be initialized. /// @param params The params necessary to mint a position, encoded as `MintParams` in calldata /// @return tokenId The ID of the token that represents the minted position /// @return liquidity The amount of liquidity for this position /// @return amount0 The amount of token0 /// @return amount1 The amount of token1 function mint(MintParams calldata params) external payable returns ( uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1 ); struct IncreaseLiquidityParams { uint256 tokenId; uint256 amount0Desired; uint256 amount1Desired; uint256 amount0Min; uint256 amount1Min; uint256 deadline; } /// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender` /// @param params tokenId The ID of the token for which liquidity is being increased, /// amount0Desired The desired amount of token0 to be spent, /// amount1Desired The desired amount of token1 to be spent, /// amount0Min The minimum amount of token0 to spend, which serves as a slippage check, /// amount1Min The minimum amount of token1 to spend, which serves as a slippage check, /// deadline The time by which the transaction must be included to effect the change /// @return liquidity The new liquidity amount as a result of the increase /// @return amount0 The amount of token0 to acheive resulting liquidity /// @return amount1 The amount of token1 to acheive resulting liquidity function increaseLiquidity(IncreaseLiquidityParams calldata params) external payable returns ( uint128 liquidity, uint256 amount0, uint256 amount1 ); struct DecreaseLiquidityParams { uint256 tokenId; uint128 liquidity; uint256 amount0Min; uint256 amount1Min; uint256 deadline; } /// @notice Decreases the amount of liquidity in a position and accounts it to the position /// @param params tokenId The ID of the token for which liquidity is being decreased, /// amount The amount by which liquidity will be decreased, /// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity, /// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity, /// deadline The time by which the transaction must be included to effect the change /// @return amount0 The amount of token0 accounted to the position's tokens owed /// @return amount1 The amount of token1 accounted to the position's tokens owed function decreaseLiquidity(DecreaseLiquidityParams calldata params) external payable returns (uint256 amount0, uint256 amount1); struct CollectParams { uint256 tokenId; address recipient; uint128 amount0Max; uint128 amount1Max; } /// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient /// @param params tokenId The ID of the NFT for which tokens are being collected, /// recipient The account that should receive the tokens, /// amount0Max The maximum amount of token0 to collect, /// amount1Max The maximum amount of token1 to collect /// @return amount0 The amount of fees collected in token0 /// @return amount1 The amount of fees collected in token1 function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1); /// @notice Burns a token ID, which deletes it from the NFT contract. The token must have 0 liquidity and all tokens /// must be collected first. /// @param tokenId The ID of the token that is being burned function burn(uint256 tokenId) external payable; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.20; import {IERC721} from "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Enumerable.sol) pragma solidity ^0.8.20; import {IERC721} from "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Enumerable is IERC721 { /** * @dev Returns the total amount of tokens stored by the contract. */ function totalSupply() external view returns (uint256); /** * @dev Returns a token ID owned by `owner` at a given `index` of its token list. * Use along with {balanceOf} to enumerate all of ``owner``'s tokens. */ function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256); /** * @dev Returns a token ID at a given `index` of all the tokens stored by the contract. * Use along with {totalSupply} to enumerate all tokens. */ function tokenByIndex(uint256 index) external view returns (uint256); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; pragma abicoder v2; /// @title Creates and initializes V3 Pools /// @notice Provides a method for creating and initializing a pool, if necessary, for bundling with other methods that /// require the pool to exist. interface IPoolInitializer { /// @notice Creates a new pool if it does not exist, then initializes if not initialized /// @dev This method can be bundled with others via IMulticall for the first action (e.g. mint) performed against a pool /// @param token0 The contract address of token0 of the pool /// @param token1 The contract address of token1 of the pool /// @param fee The fee amount of the v3 pool for the specified token pair /// @param sqrtPriceX96 The initial square root price of the pool as a Q64.96 value /// @return pool Returns the pool address based on the pair of tokens and fee, will return the newly created pool address if necessary function createAndInitializePoolIfNecessary( address token0, address token1, uint24 fee, uint160 sqrtPriceX96 ) external payable returns (address pool); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; import '@openzeppelin/contracts/token/ERC721/IERC721.sol'; /// @title ERC721 with permit /// @notice Extension to ERC721 that includes a permit function for signature based approvals interface IERC721Permit is IERC721 { /// @notice The permit typehash used in the permit signature /// @return The typehash for the permit function PERMIT_TYPEHASH() external pure returns (bytes32); /// @notice The domain separator used in the permit signature /// @return The domain seperator used in encoding of permit signature function DOMAIN_SEPARATOR() external view returns (bytes32); /// @notice Approve of a specific token ID for spending by spender via signature /// @param spender The account that is being approved /// @param tokenId The ID of the token that is being approved for spending /// @param deadline The deadline timestamp by which the call must be mined for the approve to work /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s` /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s` /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v` function permit( address spender, uint256 tokenId, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external payable; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; /// @title Periphery Payments /// @notice Functions to ease deposits and withdrawals of ETH interface IPeripheryPayments { /// @notice Unwraps the contract's WETH9 balance and sends it to recipient as ETH. /// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users. /// @param amountMinimum The minimum amount of WETH9 to unwrap /// @param recipient The address receiving ETH function unwrapWETH9(uint256 amountMinimum, address recipient) external payable; /// @notice Refunds any ETH balance held by this contract to the `msg.sender` /// @dev Useful for bundling with mint or increase liquidity that uses ether, or exact output swaps /// that use ether for the input amount function refundETH() external payable; /// @notice Transfers the full amount of a token held by this contract to recipient /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users /// @param token The contract address of the token which will be transferred to `recipient` /// @param amountMinimum The minimum amount of token required for a transfer /// @param recipient The destination address of the token function sweepToken( address token, uint256 amountMinimum, address recipient ) external payable; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Immutable state /// @notice Functions that return immutable state of the router interface IPeripheryImmutableState { /// @return Returns the address of the Uniswap V3 factory function factory() external view returns (address); /// @return Returns the address of WETH9 function WETH9() external view returns (address); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Provides functions for deriving a pool address from the factory, tokens, and the fee library PoolAddress { bytes32 internal constant POOL_INIT_CODE_HASH = 0xa598dd2fba360510c5a8f02f44423a4468e902df5857dbce3ca162a43a3a31ff; /// @notice The identifying key of the pool struct PoolKey { address token0; address token1; uint24 fee; } /// @notice Returns PoolKey: the ordered tokens with the matched fee levels /// @param tokenA The first token of a pool, unsorted /// @param tokenB The second token of a pool, unsorted /// @param fee The fee level of the pool /// @return Poolkey The pool details with ordered token0 and token1 assignments function getPoolKey( address tokenA, address tokenB, uint24 fee ) internal pure returns (PoolKey memory) { if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA); return PoolKey({token0: tokenA, token1: tokenB, fee: fee}); } /// @notice Deterministically computes the pool address given the factory and PoolKey /// @param factory The Uniswap V3 factory contract address /// @param key The PoolKey /// @return pool The contract address of the V3 pool function computeAddress(address factory, PoolKey memory key) internal pure returns (address pool) { require(key.token0 < key.token1); pool = address( uint160( uint256( keccak256( abi.encodePacked( hex'ff', factory, keccak256(abi.encode(key.token0, key.token1, key.fee)), POOL_INIT_CODE_HASH ) ) ) ) ); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or * {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the address zero. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
{ "viaIR": false, "codegen": "yul", "remappings": [ "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@uniswap/v3-core/contracts/=lib/v3-core/contracts/", "create3-factory/=lib/create3-factory/", "ds-test/=lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "multicaller/=lib/multicaller/src/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "solady/=lib/solady/src/", "solmate/=lib/solmate/src/", "v3-core/=lib/v3-core/contracts/", "v3-periphery/=lib/v3-periphery/contracts/" ], "evmVersion": "cancun", "outputSelection": { "*": { "*": [ "abi", "metadata" ], "": [ "ast" ] } }, "optimizer": { "enabled": true, "mode": "3", "fallback_to_optimizing_for_size": false, "disable_system_request_memoization": true }, "metadata": {}, "libraries": {}, "enableEraVMExtensions": false, "forceEVMLA": false }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"contract INonfungiblePositionManager","name":"positionManager_","type":"address"},{"internalType":"address","name":"owner_","type":"address"},{"internalType":"address","name":"protocolFeeRecipient_","type":"address"},{"internalType":"uint96","name":"protocolFeeWad_","type":"uint96"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":true,"internalType":"address","name":"protocolFeeRecipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"recipientFee0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"recipientFee1","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"protocolFee0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"protocolFee1","type":"uint256"}],"name":"ClaimFees","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":true,"internalType":"address","name":"deployer","type":"address"}],"name":"Lock","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"protocolFeeRecipient","type":"address"},{"indexed":true,"internalType":"uint96","name":"protocolFeeWad","type":"uint96"}],"name":"SetProtocolFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":true,"internalType":"address","name":"deployer","type":"address"},{"indexed":true,"internalType":"address","name":"newDeployer","type":"address"}],"name":"TransferDeployership","type":"event"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"claimFees","outputs":[{"internalType":"uint256","name":"recipientFee0","type":"uint256"},{"internalType":"uint256","name":"recipientFee1","type":"uint256"},{"internalType":"uint256","name":"protocolFee0","type":"uint256"},{"internalType":"uint256","name":"protocolFee1","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"deployerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"positionManager","outputs":[{"internalType":"contract INonfungiblePositionManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"protocolFeeRecipient","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"protocolFeeWad","outputs":[{"internalType":"uint96","name":"","type":"uint96"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"protocolFeeRecipient_","type":"address"},{"internalType":"uint96","name":"protocolFeeWad_","type":"uint96"}],"name":"setProtocolFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"token0Of","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"token1Of","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"address","name":"newDeployer","type":"address"}],"name":"transferDeployership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Deployed Bytecode
0x000200000000000200120000000000020001000000010355000000600310027000000147033001970000000100200190000000210000c13d0000008002000039000000400020043f000000040030008c000004d10000413d000000000201043b000000e002200270000001510020009c0000007d0000213d000001590020009c000000a70000213d0000015d0020009c000000d80000613d0000015e0020009c0000016b0000613d0000015f0020009c000004d10000c13d000000240030008c000004d10000413d0000000002000416000000000002004b000004d10000c13d0000000401100370000000000101043b000000000010043f0000000201000039000001740000013d0000000002000416000000000002004b000004d10000c13d0000001f023000390000014802200197000000a002200039000000400020043f0000001f0430018f0000014905300198000000a002500039000000320000613d000000a006000039000000000701034f000000007807043c0000000006860436000000000026004b0000002e0000c13d000000000004004b0000003f0000613d000000000151034f0000000304400210000000000502043300000000054501cf000000000545022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000151019f0000000000120435000000800030008c000004d10000413d000000a00100043d0000014a0010009c000004d10000213d000000c00600043d0000014a0060009c000004d10000213d000000e00500043d0000014a0050009c000004d10000213d000001000200043d0000014b0020009c000004d10000213d000b00000001001d000000000100041a0000014c01100197000000000161019f000000000010041b0000000001000414000001470010009c0000014701008041000000c0011002100000014d011001c7000a00000002001d0000800d0200003900000003030000390000014e04000041000c00000005001d00000000050000190517050d0000040f0000000b010000290000000c0500002900000001002001900000000a02000029000004d10000613d0000014b06200197000000800010043f000000a001200210000000000151019f0000000102000039000000000012041b0000000001000414000001470010009c0000014701008041000000c0011002100000014d011001c70000800d0200003900000003030000390000014f040000410517050d0000040f0000000100200190000004d10000613d000000800100043d0000014000000443000001600010044300000020010000390000010000100443000000010100003900000120001004430000015001000041000005180001042e000001520020009c000000b80000213d000001560020009c0000013c0000613d000001570020009c000001770000613d000001580020009c000004d10000c13d000000240030008c000004d10000413d0000000002000416000000000002004b000004d10000c13d0000000401100370000000000201043b0000000001000415000b00000001001d000c00000002001d000000000020043f0000000201000039000000200010043f0000000001000414000001470010009c0000014701008041000000c00110021000000160011001c70000801002000039051705120000040f0000000100200190000004d10000613d0000000104000039000000000304041a000000000201043b000000400100043d000001630010009c000001d40000a13d0000017301000041000000000010043f0000004101000039000000040010043f000001740100004100000519000104300000015a0020009c000001410000613d0000015b0020009c000001800000613d0000015c0020009c000004d10000c13d0000000001000416000000000001004b000004d10000c13d0000000001000412001200000001001d001100000000003d0000000001000415000000120110008a0000000501100210051704fa0000040f000001850000013d000001530020009c000001610000613d000001540020009c000001890000613d000001550020009c000004d10000c13d000000240030008c000004d10000413d0000000002000416000000000002004b000004d10000c13d0000000401100370000000000601043b0000014a0060009c000004d10000213d000000000100041a0000014a051001970000000002000411000000000052004b000001ca0000c13d0000014c01100197000000000161019f000000000010041b0000000001000414000001470010009c0000014701008041000000c0011002100000014d011001c70000800d0200003900000003030000390000014e04000041000001c50000013d000000840030008c000004d10000413d0000000002000416000000000002004b000004d10000c13d0000000402100370000000000202043b0000014a0020009c000004d10000213d0000002402100370000000000202043b0000014a0020009c000004d10000213d0000004402100370000000000502043b0000006402100370000000000202043b000001690020009c000004d10000213d0000002304200039000000000034004b000004d10000813d0000000404200039000000000141034f000000000601043b000001690060009c000004d10000213d00000000016200190000002401100039000000000031004b000004d10000213d000a00000006001d000b00000004001d000c00000005001d000001660100004100000000001004430000000001000412000000040010044300000024000004430000000001000414000001470010009c0000014701008041000000c00110021000000167011001c70000800502000039051705120000040f0000000100200190000002100000613d000000000101043b0000014a011001970000000002000411000000000012004b000002110000c13d0000000a01000029000000200010008c0000000c020000290000000b01000029000004d10000413d00000020011000390000000101100367000000000101043b000b00000001001d0000014a0010009c000004d10000213d000000000020043f0000000201000039000000200010043f0000000001000414000001470010009c0000014701008041000000c00110021000000160011001c70000801002000039051705120000040f0000000c030000290000000100200190000004d10000613d0000000b020000290009014a0020019b000000000101043b000000000201041a0000014c0220019700000009022001af000000000021041b0000017a01000041000000400200043d0000000001120436000a00000001001d000b00000002001d0000000401200039000000000031043500000000010004140000000002000411000000040020008c0000034f0000c13d0000000003000031000001800030008c00000180040000390000000004034019000003790000013d0000000001000416000000000001004b000004d10000c13d000000000100041a000001850000013d000000440030008c000004d10000413d0000000002000416000000000002004b000004d10000c13d0000000402100370000000000502043b0000014a0050009c000004d10000213d0000002401100370000000000101043b0000014b0010009c000004d10000213d000000000200041a0000014a022001970000000003000411000000000023004b000001ca0000c13d0000014b06100197000000a001100210000000000151019f0000000102000039000000000012041b0000000001000414000001470010009c0000014701008041000000c0011002100000014d011001c70000800d0200003900000003030000390000014f04000041000001c50000013d000000240030008c000004d10000413d0000000002000416000000000002004b000004d10000c13d0000000401100370000000000101043b000000000010043f0000000301000039000001740000013d000000240030008c000004d10000413d0000000002000416000000000002004b000004d10000c13d0000000401100370000000000101043b000000000010043f0000000401000039000000200010043f051704ed0000040f000001840000013d0000000001000416000000000001004b000004d10000c13d0000000101000039000000000101041a000000a001100270000000800010043f0000016201000041000005180001042e0000000001000416000000000001004b000004d10000c13d0000000101000039000000000101041a0000014a01100197000000800010043f0000016201000041000005180001042e000000440030008c000004d10000413d0000000002000416000000000002004b000004d10000c13d0000000402100370000000000302043b0000002401100370000000000101043b000b00000001001d0000014a0010009c000004d10000213d000000000030043f0000000201000039000000200010043f0000000001000414000001470010009c0000014701008041000000c00110021000000160011001c70000801002000039000c00000003001d051705120000040f0000000c030000290000000100200190000004d10000613d000000000101043b000000000101041a0000014a011001970000000002000411000000000012004b000002110000c13d000000000030043f0000000201000039000000200010043f0000000001000414000001470010009c0000014701008041000000c00110021000000160011001c70000801002000039051705120000040f0000000c050000290000000100200190000004d10000613d000000000101043b000000000201041a0000014c022001970000000b07000029000000000272019f000000000021041b0000000001000414000001470010009c0000014701008041000000c0011002100000014d011001c70000800d020000390000000403000039000001610400004100000000060004110517050d0000040f0000000100200190000004d10000613d0000000001000019000005180001042e0000017501000041000000800010043f0000002001000039000000840010043f0000000c01000039000000a40010043f0000017601000041000000c40010043f00000177010000410000051900010430000600000004001d000900000003001d000000000202041a000700000002001d0000008002100039000000400020043f000000600210003900000164030000410000000000320435000000400410003900000000003404350000002003100039000000000500041000000000005304350000000c0500002900000000005104350000016505000041000000400600043d0000000005560436000800000005001d00000000010104330000000405600039000000000015043500000000010304330000014a0110019700000024036000390000000000130435000000000104043300000164011001970000004403600039000000000013043500000000010204330000016401100197000a00000006001d00000064026000390000000000120435000001660100004100000000001004430000000001000412000000040010044300000024000004430000000001000414000001470010009c0000014701008041000000c00110021000000167011001c70000800502000039051705120000040f0000000100200190000002100000613d000000000201043b00000000010004140000014a02200197000000040020008c000002220000c13d0000000003000031000000400030008c000000400400003900000000040340190000024b0000013d000000000001042f000000400100043d00000044021000390000017803000041000000000032043500000024021000390000000403000039000000000032043500000175020000410000000000210435000000040210003900000020030000390000000000320435000001470010009c0000014701008041000000400110021000000179011001c700000519000104300000000a03000029000001470030009c00000147030080410000004003300210000001470010009c0000014701008041000000c001100210000000000131019f00000168011001c70517050d0000040f00000060031002700000014703300197000000400030008c000000400400003900000000040340190000001f0640018f00000060074001900000000a057000290000023b0000613d000000000801034f0000000a09000029000000008a08043c0000000009a90436000000000059004b000002370000c13d000000000006004b000002480000613d000000000771034f0000000306600210000000000805043300000000086801cf000000000868022f000000000707043b0000010006600089000000000767022f00000000066701cf000000000686019f0000000000650435000000000003001f00000001002001900000027a0000613d0000001f01400039000000e00210018f0000000a01200029000000000021004b00000000020000390000000102004039000001690010009c0000000904000029000000a10000213d0000000100200190000000a10000c13d000000400010043f000000400030008c000004d10000413d000500a000400278000000080100002900000000020104330000000a010000290000000001010433000a00000001001d000000000001004b000400000002001d000002980000c13d000000000002004b000a00000000001d0000000003000019000800000000001d0000000005000019000002c30000c13d00000000010004150000000b011000690000000001000002000000400100043d000c00000001001d0000000a020000290000000804000029051704e30000040f0000000c020000290000000001210049000001470010009c00000147010080410000006001100210000001470020009c00000147020080410000004002200210000000000121019f000005180001042e0000001f0530018f0000014906300198000000400200043d0000000004620019000002850000613d000000000701034f0000000008020019000000007907043c0000000008980436000000000048004b000002810000c13d000000000005004b000002920000613d000000000161034f0000000305500210000000000604043300000000065601cf000000000656022f000000000101043b0000010005500089000000000151022f00000000015101cf000000000161019f00000000001404350000006001300210000001470020009c00000147020080410000004002200210000000000112019f0000051900010430000d00000000003d0000000c01000029000000000010043f0000000301000039000000200010043f0000000001000414000001470010009c0000014701008041000000c00110021000000160011001c70000801002000039051705120000040f00000009030000290000000100200190000004d10000613d000000000101043b000000000101041a000e014a0010019b0000016a0030009c000002b00000413d000000010100008a00000005011000fa0000000a0010006c000002e60000413d0000000a0300002900000005013000b90000016b1210012a000000000001004b000000010220c039000800000002001d000a000000230053000002f20000413d00000000010004150000000d0110008a000300050010021800000000010004150000000e0110008a0002000500100218000000040000006b000002cd0000c13d000500000000001d000100000000001d000002f80000013d00000000010004150000000f0110008a00030005001002180000000001000415000000100110008a0002000500100218000f00000000003d001000000000003d000800000000001d000a00000000001d0000000c01000029000000000010043f0000000401000039000000200010043f0000000001000414000001470010009c0000014701008041000000c00110021000000160011001c70000801002000039051705120000040f00000001002001900000000903000029000004d10000613d000000000101043b000000000101041a000000030200002900000005022002700000014a0210019d0000016a0030009c000002ea0000413d000000010100008a00000005011000fa000000040010006c000002ea0000813d0000016c01000041000000000010043f0000016d010000410000051900010430000000050100002900000004011000b90000016b1210012a000000000001004b000000010220c039000100000002001d0005000400200073000002f80000813d0000017301000041000000000010043f0000001101000039000000040010043f0000017401000041000005190001043000000007010000290007014a0010019b0000000a0000006b0000033c0000613d0000000201000029000000050110027000000000020100310000000701000029000000140010043f0000000a01000029000000340010043f0000016e01000041000000000010043f0000000001000414000000040020008c0000030c0000c13d000000100100043d000000000010043f00000000020000310000032f0000013d000001470010009c0000014701008041000000c0011002100000016f011001c70517050d0000040f000600000002001d00000060021002700000014702200197000000200020008c000000200300003900000000030240190000001f0430018f0000002003300190000003200000613d000000000501034f0000000006000019000000005705043c0000000006760436000000000036004b0000031c0000c13d000000000004004b0000032d0000613d000000000131034f0000000304400210000000000503043300000000054501cf000000000545022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000151019f0000000000130435000000000002001f000000000100043d000000000002004b00000000020000390000000102006039000000010010008c0000000001000039000000010100603900000006030000290000000100300190000004d30000613d000000000121019f0000000100100190000004d30000613d000000340000043f000000050000006b0000042b0000613d0000000301000029000000050110027000000000020100310000000701000029000000140010043f0000000501000029000000340010043f0000016e01000041000000000010043f0000000001000414000000040020008c000003fd0000c13d0000000102000039000000100100043d000000000010043f00000000030000310000041f0000013d0000000b02000029000001470020009c00000147020080410000004002200210000001470010009c0000014701008041000000c001100210000000000121019f00000174011001c70000000002000411051705120000040f00000060031002700000014703300197000001800030008c000001800400003900000000040340190000001f0640018f000001e0074001900000000b05700029000003690000613d000000000801034f0000000b09000029000000008a08043c0000000009a90436000000000059004b000003650000c13d000000000006004b000003760000613d000000000771034f0000000306600210000000000805043300000000086801cf000000000868022f000000000707043b0000010006600089000000000767022f00000000066701cf000000000686019f0000000000650435000000000003001f0000000100200190000004d70000613d0000001f01400039000003e00210018f0000000b01200029000000000021004b00000000020000390000000102004039000001690010009c000000a10000213d0000000100200190000000a10000c13d000000400010043f000001800030008c0000000c04000029000004d10000413d0000000b0100002900000000010104330000014b0010009c000004d10000213d0000000a0100002900000000010104330000014a0010009c000004d10000213d0000000b0100002900000040011000390000000001010433000a00000001001d0000014a0010009c000004d10000213d0000000b0100002900000060011000390000000001010433000800000001001d0000014a0010009c000004d10000213d0000000b01000029000000800110003900000000010104330000017b0010009c000004d10000213d0000000b01000029000000a00110003900000000010104330000017c001001980000017d0200004100000000020060190000017e03100197000000000232019f000000000021004b000004d10000c13d0000000b01000029000000c00110003900000000010104330000017c001001980000017d0200004100000000020060190000017e03100197000000000232019f000000000021004b000004d10000c13d0000000b01000029000000e0011000390000000001010433000001640010009c000004d10000213d0000000b0100002900000140011000390000000001010433000001640010009c000004d10000213d0000000b0100002900000160011000390000000001010433000001640010009c000004d10000213d000000000040043f0000000301000039000000200010043f0000000001000414000001470010009c0000014701008041000000c00110021000000160011001c70000801002000039051705120000040f0000000c030000290000000100200190000004d10000613d000000000101043b000000000201041a0000014c022001970000000a022001af000000000021041b000000000030043f0000000401000039000000200010043f0000000001000414000001470010009c0000014701008041000000c00110021000000160011001c70000801002000039051705120000040f0000000c050000290000000100200190000004d10000613d000000000101043b000000000201041a0000014c0220019700000008022001af000000000021041b000000400100043d000b00000001001d0000000001000414000001470010009c0000014701008041000000c0011002100000014d011001c70000800d0200003900000003030000390000017f0400004100000009060000290517050d0000040f0000000100200190000004d10000613d00000180010000410000000b020000290000000000120435000001470020009c0000014702008041000000400120021000000181011001c7000005180001042e000001470010009c0000014701008041000000c0011002100000016f011001c70517050d0000040f00000060031002700000014703300197000000200030008c000000200400003900000000040340190000001f0540018f0000002004400190000004100000613d000000000601034f0000000007000019000000006806043c0000000007870436000000000047004b0000040c0000c13d000000000005004b0000041d0000613d000000000141034f0000000305500210000000000604043300000000065601cf000000000656022f000000000101043b0000010005500089000000000151022f00000000015101cf000000000161019f0000000000140435000000000003001f000000000100043d000000000003004b00000000030000390000000103006039000000010010008c000000000100003900000001010060390000000100200190000004d30000613d000000000131019f0000000100100190000004d30000613d000000340000043f00000009010000290009014a0010019b000000080000006b0000046e0000613d0000000201000029000000050110027000000000020100310000000901000029000000140010043f0000000801000029000000340010043f0000016e01000041000000000010043f0000000001000414000000040020008c000004400000c13d0000000102000039000000100100043d000000000010043f0000000003000031000004620000013d000001470010009c0000014701008041000000c0011002100000016f011001c70517050d0000040f00000060031002700000014703300197000000200030008c000000200400003900000000040340190000001f0540018f0000002004400190000004530000613d000000000601034f0000000007000019000000006806043c0000000007870436000000000047004b0000044f0000c13d000000000005004b000004600000613d000000000141034f0000000305500210000000000604043300000000065601cf000000000656022f000000000101043b0000010005500089000000000151022f00000000015101cf000000000161019f0000000000140435000000000003001f000000000100043d000000000003004b00000000030000390000000103006039000000010010008c000000000100003900000001010060390000000100200190000004d30000613d000000000131019f0000000100100190000004d30000613d000000340000043f000000010000006b000004af0000613d0000000301000029000000050110027000000000020100310000000901000029000000140010043f0000000101000029000000340010043f0000016e01000041000000000010043f0000000001000414000000040020008c000004810000c13d0000000102000039000000100100043d000000000010043f0000000003000031000004a30000013d000001470010009c0000014701008041000000c0011002100000016f011001c70517050d0000040f00000060031002700000014703300197000000200030008c000000200400003900000000040340190000001f0540018f0000002004400190000004940000613d000000000601034f0000000007000019000000006806043c0000000007870436000000000047004b000004900000c13d000000000005004b000004a10000613d000000000141034f0000000305500210000000000604043300000000065601cf000000000656022f000000000101043b0000010005500089000000000151022f00000000015101cf000000000161019f0000000000140435000000000003001f000000000100043d000000000003004b00000000030000390000000103006039000000010010008c000000000100003900000001010060390000000100200190000004d30000613d000000000131019f0000000100100190000004d30000613d000000340000043f000000400100043d00000060021000390000000103000029000100000003001d000000000032043500000040021000390000000803000029000000000032043500000020021000390000000503000029000500000003001d00000000003204350000000a020000290000000000210435000001470010009c000001470100804100000040011002100000000002000414000001470020009c0000014702008041000000c002200210000000000112019f00000171011001c70000800d02000039000000040300003900000172040000410000000c05000029000000070600002900000009070000290517050d0000040f000000050300002900000001050000290000000100200190000002680000c13d000000000100001900000519000104300000017001000041000000000010043f0000016d0100004100000519000104300000001f0530018f0000014906300198000000400200043d0000000004620019000002850000613d000000000701034f0000000008020019000000007907043c0000000008980436000000000048004b000004de0000c13d000002850000013d00000060061000390000000000560435000000400510003900000000004504350000002004100039000000000034043500000000002104350000008001100039000000000001042d000000000001042f0000000001000414000001470010009c0000014701008041000000c00110021000000160011001c70000801002000039051705120000040f0000000100200190000004f80000613d000000000101043b000000000001042d0000000001000019000005190001043000000166020000410000000000200443000000050110027000000000020100310000000400200443000000010101003100000024001004430000000001000414000001470010009c0000014701008041000000c00110021000000167011001c70000800502000039051705120000040f00000001002001900000050c0000613d000000000101043b000000000001042d000000000001042f00000510002104210000000102000039000000000001042d0000000002000019000000000001042d00000515002104230000000102000039000000000001042d0000000002000019000000000001042d0000051700000432000005180001042e00000519000104300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000ffffffff00000000000000000000000000000000000000000000000000000001ffffffe000000000000000000000000000000000000000000000000000000000ffffffe0000000000000000000000000ffffffffffffffffffffffffffffffffffffffff0000000000000000000000000000000000000000ffffffffffffffffffffffffffffffffffffffffffffffff000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000008be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09f84ae861326b3d6df236451981fa52ebc77e884f3116ec345f3d80ffdfd94330000000200000000000000000000000000000080000001000000000000000000000000000000000000000000000000000000000000000000000000008da5cb5a00000000000000000000000000000000000000000000000000000000ac9791f000000000000000000000000000000000000000000000000000000000ac9791f100000000000000000000000000000000000000000000000000000000acaf8e8400000000000000000000000000000000000000000000000000000000f2fde38b000000000000000000000000000000000000000000000000000000008da5cb5b0000000000000000000000000000000000000000000000000000000093132c9f00000000000000000000000000000000000000000000000000000000ac68a7480000000000000000000000000000000000000000000000000000000047e192910000000000000000000000000000000000000000000000000000000047e192920000000000000000000000000000000000000000000000000000000064df049e00000000000000000000000000000000000000000000000000000000791b98bc00000000000000000000000000000000000000000000000000000000150b7a02000000000000000000000000000000000000000000000000000000001f24ca210000000000000000000000000000000000000000000000000000000036b04ca30200000000000000000000000000000000000040000000000000000000000000e7676ef5a0b1857009100dfd8d3b9047ae7b41b2eea3086a0ca74c7b554919840000000000000000000000000000000000000020000000800000000000000000000000000000000000000000000000000000000000000000ffffffffffffff7f00000000000000000000000000000000fffffffffffffffffffffffffffffffffc6f786500000000000000000000000000000000000000000000000000000000310ab089e4439a4c15d089f94afb7896ff553aecb10793d0ab882de59d99a32e02000002000000000000000000000000000000440000000000000000000000000000000000000000000000000000000000000084000000000000000000000000000000000000000000000000000000000000000000000000ffffffffffffffff00000000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000de0b6b3a764000000000000000000000000000000000000000000000000000000000000bac65e5b00000000000000000000000000000000000000040000001c000000000000000000000000000000000000000000000000a9059cbb00000000000000000000000000000000000000000000000000000000000000440000001000000000000000000000000000000000000000000000000000000000000000000000000090b8ec180200000000000000000000000000000000000080000000000000000000000000b589582dfddae9a82a7b38ef1107fbd904d512581cedb00d3175a74c110296814e487b7100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002400000000000000000000000008c379a000000000000000000000000000000000000000000000000000000000554e415554484f52495a4544000000000000000000000000000000000000000000000000000000000000000000000000000000640000008000000000000000004155544800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006400000000000000000000000099fbab88000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000ffffff0000000000000000000000000000000000000000000000000000000000800000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff80000000000000000000000000000000000000000000000000000000000000007fffff8adf36b92772b959cc7ed5563e47649af1c65daacf1c6e882c4a7ad21d1d2b1c150b7a02000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020000000000000000000000000cc931b603abd8857b959d5a76805b7c74e0d3fc8873c445d8c8f07639c2acc0c
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.