Overview
ETH Balance
0 ETH
ETH Value
$0.00More Info
Private Name Tags
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
592396 | 20 days ago | Contract Creation | 0 ETH |
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
ContractSpecificPaymaster
Compiler Version
v0.8.24+commit.e11b9ed9
ZkSolc Version
v1.5.7
Optimization Enabled:
Yes with Mode 3
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0 ^0.8.1 ^0.8.20; // lib/era-contracts/system-contracts/contracts/SystemContractErrors.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. // 0x86bb51b8 error AddressHasNoCode(address); // 0xefce78c7 error CallerMustBeBootloader(); // 0xb7549616 error CallerMustBeForceDeployer(); // 0x9eedbd2b error CallerMustBeSystemContract(); // 0x4f951510 error CompressionValueAddError(uint256 expected, uint256 actual); // 0x1e6aff87 error CompressionValueTransformError(uint256 expected, uint256 actual); // 0xc2ea251e error CompressionValueSubError(uint256 expected, uint256 actual); // 0x849acb7f error CompressorInitialWritesProcessedNotEqual(uint256 expected, uint256 actual); // 0x61a6a4b3 error CompressorEnumIndexNotEqual(uint256 expected, uint256 actual); // 0x9be48d8d error DerivedKeyNotEqualToCompressedValue(bytes32 expected, bytes32 provided); // 0xe223db5e error DictionaryDividedByEightNotGreaterThanEncodedDividedByTwo(); // 0x1c25715b error EmptyBytes32(); // 0x92bf3cf8 error EmptyVirtualBlocks(); // 0xc06d5cb2 error EncodedAndRealBytecodeChunkNotEqual(uint64 expected, uint64 provided); // 0x2bfbfc11 error EncodedLengthNotFourTimesSmallerThanOriginal(); // 0xe95a1fbe error FailedToChargeGas(); // 0x1f70c58f error FailedToPayOperator(); // 0x9d5da395 error FirstL2BlockInitializationError(); // 0x9e4a3c8a error HashIsNonZero(bytes32); // 0x86302004 error HashMismatch(bytes32 expected, uint256 actual); // 0x4e23d035 error IndexOutOfBounds(); // 0x122e73e9 error IndexSizeError(); // 0x03eb8b54 error InsufficientFunds(uint256 required, uint256 actual); // 0x1c26714c error InsufficientGas(); // 0xae962d4e error InvalidCall(); // 0x6a84bc39 error InvalidCodeHash(CodeHashReason); // 0xb4fa3fb3 error InvalidInput(); // 0x60b85677 error InvalidNonceOrderingChange(); // 0x90f049c9 error InvalidSig(SigField, uint256); // 0xf4a271b5 error Keccak256InvalidReturnData(); // 0xd2906dd9 error L2BlockMustBeGreaterThanZero(); // 0x43e266b0 error MalformedBytecode(BytecodeError); // 0xe90aded4 error NonceAlreadyUsed(address account, uint256 nonce); // 0x45ac24a6 error NonceIncreaseError(uint256 max, uint256 proposed); // 0x13595475 error NonceJumpError(); // 0x1f2f8478 error NonceNotUsed(address account, uint256 nonce); // 0x760a1568 error NonEmptyAccount(); // 0x536ec84b error NonEmptyMsgValue(); // 0xd018e08e error NonIncreasingTimestamp(); // 0x50df6bc3 error NotAllowedToDeployInKernelSpace(); // 0x35278d12 error Overflow(); // 0x7f7b0cf7 error ReconstructionMismatch(PubdataField, bytes32 expected, bytes32 actual); // 0x3adb5f1d error ShaInvalidReturnData(); // 0xbd8665e2 error StateDiffLengthMismatch(); // 0x71c3da01 error SystemCallFlagRequired(); // 0xe0456dfe error TooMuchPubdata(uint256 limit, uint256 supplied); // 0x8e4a23d6 error Unauthorized(address); // 0x3e5efef9 error UnknownCodeHash(bytes32); // 0x9ba6061b error UnsupportedOperation(); // 0xff15b069 error UnsupportedPaymasterFlow(); // 0x17a84415 error UnsupportedTxType(uint256); // 0x5708aead error UpgradeMustBeFirstTxn(); // 0x626ade30 error ValueMismatch(uint256 expected, uint256 actual); // 0x460b9939 error ValuesNotEqual(uint256 expected, uint256 actual); // 0x6818f3f9 error ZeroNonceError(); enum CodeHashReason { NotContractOnConstructor, NotConstructedContract } enum SigField { Length, V, S } enum PubdataField { NumberOfLogs, LogsHash, MsgHash, Bytecode, StateDiffCompressionVersion, ExtraData } enum BytecodeError { Version, NumberOfWords, Length, WordsMustBeOdd, DictionaryLength } // lib/era-contracts/system-contracts/contracts/interfaces/IAccountCodeStorage.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. interface IAccountCodeStorage { function storeAccountConstructingCodeHash(address _address, bytes32 _hash) external; function storeAccountConstructedCodeHash(address _address, bytes32 _hash) external; function markAccountCodeHashAsConstructed(address _address) external; function getRawCodeHash(address _address) external view returns (bytes32 codeHash); function getCodeHash(uint256 _input) external view returns (bytes32 codeHash); function getCodeSize(uint256 _input) external view returns (uint256 codeSize); } // lib/era-contracts/system-contracts/contracts/interfaces/IBaseToken.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. interface IBaseToken { function balanceOf(uint256) external view returns (uint256); function transferFromTo(address _from, address _to, uint256 _amount) external; function totalSupply() external view returns (uint256); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function mint(address _account, uint256 _amount) external; function withdraw(address _l1Receiver) external payable; function withdrawWithMessage(address _l1Receiver, bytes calldata _additionalData) external payable; event Mint(address indexed account, uint256 amount); event Transfer(address indexed from, address indexed to, uint256 value); event Withdrawal(address indexed _l2Sender, address indexed _l1Receiver, uint256 _amount); event WithdrawalWithMessage( address indexed _l2Sender, address indexed _l1Receiver, uint256 _amount, bytes _additionalData ); } // lib/era-contracts/system-contracts/contracts/interfaces/IComplexUpgrader.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. /** * @author Matter Labs * @custom:security-contact [email protected] * @notice The interface for the ComplexUpgrader contract. */ interface IComplexUpgrader { function upgrade(address _delegateTo, bytes calldata _calldata) external payable; } // lib/era-contracts/system-contracts/contracts/interfaces/ICompressor.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. // The bitmask by applying which to the compressed state diff metadata we retrieve its operation. uint8 constant OPERATION_BITMASK = 7; // The number of bits shifting the compressed state diff metadata by which we retrieve its length. uint8 constant LENGTH_BITS_OFFSET = 3; // The maximal length in bytes that an enumeration index can have. uint8 constant MAX_ENUMERATION_INDEX_SIZE = 8; /** * @author Matter Labs * @custom:security-contact [email protected] * @notice The interface for the Compressor contract, responsible for verifying the correctness of * the compression of the state diffs and bytecodes. */ interface ICompressor { function publishCompressedBytecode( bytes calldata _bytecode, bytes calldata _rawCompressedData ) external returns (bytes32 bytecodeHash); function verifyCompressedStateDiffs( uint256 _numberOfStateDiffs, uint256 _enumerationIndexSize, bytes calldata _stateDiffs, bytes calldata _compressedStateDiffs ) external returns (bytes32 stateDiffHash); } // lib/era-contracts/system-contracts/contracts/interfaces/IContractDeployer.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. interface IContractDeployer { /// @notice Defines the version of the account abstraction protocol /// that a contract claims to follow. /// - `None` means that the account is just a contract and it should never be interacted /// with as a custom account /// - `Version1` means that the account follows the first version of the account abstraction protocol enum AccountAbstractionVersion { None, Version1 } /// @notice Defines the nonce ordering used by the account /// - `Sequential` means that it is expected that the nonces are monotonic and increment by 1 /// at a time (the same as EOAs). /// - `Arbitrary` means that the nonces for the accounts can be arbitrary. The operator /// should serve the transactions from such an account on a first-come-first-serve basis. /// @dev This ordering is more of a suggestion to the operator on how the AA expects its transactions /// to be processed and is not considered as a system invariant. enum AccountNonceOrdering { Sequential, Arbitrary } struct AccountInfo { AccountAbstractionVersion supportedAAVersion; AccountNonceOrdering nonceOrdering; } event ContractDeployed( address indexed deployerAddress, bytes32 indexed bytecodeHash, address indexed contractAddress ); event AccountNonceOrderingUpdated(address indexed accountAddress, AccountNonceOrdering nonceOrdering); event AccountVersionUpdated(address indexed accountAddress, AccountAbstractionVersion aaVersion); function getNewAddressCreate2( address _sender, bytes32 _bytecodeHash, bytes32 _salt, bytes calldata _input ) external view returns (address newAddress); function getNewAddressCreate(address _sender, uint256 _senderNonce) external pure returns (address newAddress); function create2( bytes32 _salt, bytes32 _bytecodeHash, bytes calldata _input ) external payable returns (address newAddress); function create2Account( bytes32 _salt, bytes32 _bytecodeHash, bytes calldata _input, AccountAbstractionVersion _aaVersion ) external payable returns (address newAddress); /// @dev While the `_salt` parameter is not used anywhere here, /// it is still needed for consistency between `create` and /// `create2` functions (required by the compiler). function create( bytes32 _salt, bytes32 _bytecodeHash, bytes calldata _input ) external payable returns (address newAddress); /// @dev While `_salt` is never used here, we leave it here as a parameter /// for the consistency with the `create` function. function createAccount( bytes32 _salt, bytes32 _bytecodeHash, bytes calldata _input, AccountAbstractionVersion _aaVersion ) external payable returns (address newAddress); /// @notice Returns the information about a certain AA. function getAccountInfo(address _address) external view returns (AccountInfo memory info); /// @notice Can be called by an account to update its account version function updateAccountVersion(AccountAbstractionVersion _version) external; /// @notice Can be called by an account to update its nonce ordering function updateNonceOrdering(AccountNonceOrdering _nonceOrdering) external; } // lib/era-contracts/system-contracts/contracts/interfaces/IImmutableSimulator.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. struct ImmutableData { uint256 index; bytes32 value; } interface IImmutableSimulator { function getImmutable(address _dest, uint256 _index) external view returns (bytes32); function setImmutables(address _dest, ImmutableData[] calldata _immutables) external; } // lib/era-contracts/system-contracts/contracts/interfaces/IKnownCodesStorage.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. /** * @author Matter Labs * @custom:security-contact [email protected] * @notice The interface for the KnownCodesStorage contract, which is responsible * for storing the hashes of the bytecodes that have been published to the network. */ interface IKnownCodesStorage { event MarkedAsKnown(bytes32 indexed bytecodeHash, bool indexed sendBytecodeToL1); function markFactoryDeps(bool _shouldSendToL1, bytes32[] calldata _hashes) external; function markBytecodeAsPublished(bytes32 _bytecodeHash) external; function getMarker(bytes32 _hash) external view returns (uint256); } // lib/era-contracts/system-contracts/contracts/interfaces/IL1Messenger.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. /// @dev The log passed from L2 /// @param l2ShardId The shard identifier, 0 - rollup, 1 - porter. All other values are not used but are reserved for the future /// @param isService A boolean flag that is part of the log along with `key`, `value`, and `sender` address. /// This field is required formally but does not have any special meaning. /// @param txNumberInBlock The L2 transaction number in a block, in which the log was sent /// @param sender The L2 address which sent the log /// @param key The 32 bytes of information that was sent in the log /// @param value The 32 bytes of information that was sent in the log // Both `key` and `value` are arbitrary 32-bytes selected by the log sender struct L2ToL1Log { uint8 l2ShardId; bool isService; uint16 txNumberInBlock; address sender; bytes32 key; bytes32 value; } /// @dev Bytes in raw L2 to L1 log /// @dev Equal to the bytes size of the tuple - (uint8 ShardId, bool isService, uint16 txNumberInBlock, address sender, bytes32 key, bytes32 value) uint256 constant L2_TO_L1_LOG_SERIALIZE_SIZE = 88; /// @dev The value of default leaf hash for L2 to L1 logs Merkle tree /// @dev An incomplete fixed-size tree is filled with this value to be a full binary tree /// @dev Actually equal to the `keccak256(new bytes(L2_TO_L1_LOG_SERIALIZE_SIZE))` bytes32 constant L2_L1_LOGS_TREE_DEFAULT_LEAF_HASH = 0x72abee45b59e344af8a6e520241c4744aff26ed411f4c4b00f8af09adada43ba; /// @dev The current version of state diff compression being used. uint256 constant STATE_DIFF_COMPRESSION_VERSION_NUMBER = 1; /** * @author Matter Labs * @custom:security-contact [email protected] * @notice The interface of the L1 Messenger contract, responsible for sending messages to L1. */ interface IL1Messenger { // Possibly in the future we will be able to track the messages sent to L1 with // some hooks in the VM. For now, it is much easier to track them with L2 events. event L1MessageSent(address indexed _sender, bytes32 indexed _hash, bytes _message); event L2ToL1LogSent(L2ToL1Log _l2log); event BytecodeL1PublicationRequested(bytes32 _bytecodeHash); function sendToL1(bytes memory _message) external returns (bytes32); function sendL2ToL1Log(bool _isService, bytes32 _key, bytes32 _value) external returns (uint256 logIdInMerkleTree); // This function is expected to be called only by the KnownCodesStorage system contract function requestBytecodeL1Publication(bytes32 _bytecodeHash) external; } // lib/era-contracts/system-contracts/contracts/interfaces/INonceHolder.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. /** * @author Matter Labs * @dev Interface of the nonce holder contract -- a contract used by the system to ensure * that there is always a unique identifier for a transaction with a particular account (we call it nonce). * In other words, the pair of (address, nonce) should always be unique. * @dev Custom accounts should use methods of this contract to store nonces or other possible unique identifiers * for the transaction. */ interface INonceHolder { event ValueSetUnderNonce(address indexed accountAddress, uint256 indexed key, uint256 value); /// @dev Returns the current minimal nonce for account. function getMinNonce(address _address) external view returns (uint256); /// @dev Returns the raw version of the current minimal nonce /// (equal to minNonce + 2^128 * deployment nonce). function getRawNonce(address _address) external view returns (uint256); /// @dev Increases the minimal nonce for the msg.sender. function increaseMinNonce(uint256 _value) external returns (uint256); /// @dev Sets the nonce value `key` as used. function setValueUnderNonce(uint256 _key, uint256 _value) external; /// @dev Gets the value stored inside a custom nonce. function getValueUnderNonce(uint256 _key) external view returns (uint256); /// @dev A convenience method to increment the minimal nonce if it is equal /// to the `_expectedNonce`. function incrementMinNonceIfEquals(uint256 _expectedNonce) external; /// @dev Returns the deployment nonce for the accounts used for CREATE opcode. function getDeploymentNonce(address _address) external view returns (uint256); /// @dev Increments the deployment nonce for the account and returns the previous one. function incrementDeploymentNonce(address _address) external returns (uint256); /// @dev Determines whether a certain nonce has been already used for an account. function validateNonceUsage(address _address, uint256 _key, bool _shouldBeUsed) external view; /// @dev Returns whether a nonce has been used for an account. function isNonceUsed(address _address, uint256 _nonce) external view returns (bool); } // lib/era-contracts/system-contracts/contracts/interfaces/IPaymasterFlow.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. /** * @author Matter Labs * @dev The interface that is used for encoding/decoding of * different types of paymaster flows. * @notice This is NOT an interface to be implemented * by contracts. It is just used for encoding. */ interface IPaymasterFlow { function general(bytes calldata input) external; function approvalBased(address _token, uint256 _minAllowance, bytes calldata _innerInput) external; } // lib/era-contracts/system-contracts/contracts/interfaces/IPubdataChunkPublisher.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. /** * @author Matter Labs * @custom:security-contact [email protected] * @notice Interface for contract responsible chunking pubdata into the appropriate size for EIP-4844 blobs. */ interface IPubdataChunkPublisher { /// @notice Chunks pubdata into pieces that can fit into blobs. /// @param _pubdata The total l2 to l1 pubdata that will be sent via L1 blobs. function chunkAndPublishPubdata(bytes calldata _pubdata) external; } // lib/era-contracts/system-contracts/contracts/interfaces/ISystemContext.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. /** * @author Matter Labs * @custom:security-contact [email protected] * @notice Contract that stores some of the context variables, that may be either * block-scoped, tx-scoped or system-wide. */ interface ISystemContext { struct BlockInfo { uint128 timestamp; uint128 number; } /// @notice A structure representing the timeline for the upgrade from the batch numbers to the L2 block numbers. /// @dev It will be used for the L1 batch -> L2 block migration in Q3 2023 only. struct VirtualBlockUpgradeInfo { /// @notice In order to maintain consistent results for `blockhash` requests, we'll /// have to remember the number of the batch when the upgrade to the virtual blocks has been done. /// The hashes for virtual blocks before the upgrade are identical to the hashes of the corresponding batches. uint128 virtualBlockStartBatch; /// @notice L2 block when the virtual blocks have caught up with the L2 blocks. Starting from this block, /// all the information returned to users for block.timestamp/number, etc should be the information about the L2 blocks and /// not virtual blocks. uint128 virtualBlockFinishL2Block; } function chainId() external view returns (uint256); function origin() external view returns (address); function gasPrice() external view returns (uint256); function blockGasLimit() external view returns (uint256); function coinbase() external view returns (address); function difficulty() external view returns (uint256); function baseFee() external view returns (uint256); function txNumberInBlock() external view returns (uint16); function getBlockHashEVM(uint256 _block) external view returns (bytes32); function getBatchHash(uint256 _batchNumber) external view returns (bytes32 hash); function getBlockNumber() external view returns (uint128); function getBlockTimestamp() external view returns (uint128); function getBatchNumberAndTimestamp() external view returns (uint128 blockNumber, uint128 blockTimestamp); function getL2BlockNumberAndTimestamp() external view returns (uint128 blockNumber, uint128 blockTimestamp); function gasPerPubdataByte() external view returns (uint256 gasPerPubdataByte); function getCurrentPubdataSpent() external view returns (uint256 currentPubdataSpent); } // lib/era-contracts/system-contracts/contracts/libraries/RLPEncoder.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. /** * @author Matter Labs * @custom:security-contact [email protected] * @notice This library provides RLP encoding functionality. */ library RLPEncoder { function encodeAddress(address _val) internal pure returns (bytes memory encoded) { // The size is equal to 20 bytes of the address itself + 1 for encoding bytes length in RLP. encoded = new bytes(0x15); bytes20 shiftedVal = bytes20(_val); assembly { // In the first byte we write the encoded length as 0x80 + 0x14 == 0x94. mstore(add(encoded, 0x20), 0x9400000000000000000000000000000000000000000000000000000000000000) // Write address data without stripping zeros. mstore(add(encoded, 0x21), shiftedVal) } } function encodeUint256(uint256 _val) internal pure returns (bytes memory encoded) { unchecked { if (_val < 128) { encoded = new bytes(1); // Handle zero as a non-value, since stripping zeroes results in an empty byte array encoded[0] = (_val == 0) ? bytes1(uint8(128)) : bytes1(uint8(_val)); } else { uint256 hbs = _highestByteSet(_val); encoded = new bytes(hbs + 2); encoded[0] = bytes1(uint8(hbs + 0x81)); uint256 lbs = 31 - hbs; uint256 shiftedVal = _val << (lbs * 8); assembly { mstore(add(encoded, 0x21), shiftedVal) } } } } /// @notice Encodes the size of bytes in RLP format. /// @param _len The length of the bytes to encode. It has a `uint64` type since as larger values are not supported. /// NOTE: panics if the length is 1 since the length encoding is ambiguous in this case. function encodeNonSingleBytesLen(uint64 _len) internal pure returns (bytes memory) { assert(_len != 1); return _encodeLength(_len, 0x80); } /// @notice Encodes the size of list items in RLP format. /// @param _len The length of the bytes to encode. It has a `uint64` type since as larger values are not supported. function encodeListLen(uint64 _len) internal pure returns (bytes memory) { return _encodeLength(_len, 0xc0); } function _encodeLength(uint64 _len, uint256 _offset) private pure returns (bytes memory encoded) { unchecked { if (_len < 56) { encoded = new bytes(1); encoded[0] = bytes1(uint8(_len + _offset)); } else { uint256 hbs = _highestByteSet(uint256(_len)); encoded = new bytes(hbs + 2); encoded[0] = bytes1(uint8(_offset + hbs + 56)); uint256 lbs = 31 - hbs; uint256 shiftedVal = uint256(_len) << (lbs * 8); assembly { mstore(add(encoded, 0x21), shiftedVal) } } } } /// @notice Computes the index of the highest byte set in number. /// @notice Uses little endian ordering (The least significant byte has index `0`). /// NOTE: returns `0` for `0` function _highestByteSet(uint256 _number) private pure returns (uint256 hbs) { unchecked { if (_number > type(uint128).max) { _number >>= 128; hbs += 16; } if (_number > type(uint64).max) { _number >>= 64; hbs += 8; } if (_number > type(uint32).max) { _number >>= 32; hbs += 4; } if (_number > type(uint16).max) { _number >>= 16; hbs += 2; } if (_number > type(uint8).max) { ++hbs; } } } } // lib/era-contracts/system-contracts/contracts/openzeppelin/token/ERC20/IERC20.sol // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // lib/era-contracts/system-contracts/contracts/openzeppelin/token/ERC20/extensions/IERC20Permit.sol // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Permit.sol) // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // lib/era-contracts/system-contracts/contracts/openzeppelin/utils/Address.sol // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require( address(this).balance >= amount, "Address: insufficient balance" ); (bool success, ) = recipient.call{value: amount}(""); require( success, "Address: unable to send value, recipient may have reverted" ); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue( target, data, 0, "Address: low-level call failed" ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue( target, data, value, "Address: low-level call with value failed" ); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require( address(this).balance >= value, "Address: insufficient balance for call" ); (bool success, bytes memory returndata) = target.call{value: value}( data ); return verifyCallResultFromTarget( target, success, returndata, errorMessage ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall( target, data, "Address: low-level static call failed" ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget( target, success, returndata, errorMessage ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall( target, data, "Address: low-level delegate call failed" ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget( target, success, returndata, errorMessage ); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // lib/era-contracts/system-contracts/contracts/openzeppelin/token/ERC20/utils/SafeERC20.sol // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transfer.selector, to, value) ); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value) ); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn( token, abi.encodeWithSelector(token.approve.selector, spender, value) ); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn( token, abi.encodeWithSelector( token.approve.selector, spender, newAllowance ) ); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require( oldAllowance >= value, "SafeERC20: decreased allowance below zero" ); uint256 newAllowance = oldAllowance - value; _callOptionalReturn( token, abi.encodeWithSelector( token.approve.selector, spender, newAllowance ) ); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit({owner: owner, spender: spender, value: value, deadline : deadline, v: v, r: r, s: s}); uint256 nonceAfter = token.nonces(owner); require( nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed" ); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall( data, "SafeERC20: low-level call failed" ); if (returndata.length > 0) { // Return data is optional require( abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed" ); } } } // lib/era-contracts/system-contracts/contracts/Constants.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. /// @dev All the system contracts introduced by ZKsync have their addresses /// started from 2^15 in order to avoid collision with Ethereum precompiles. uint160 constant SYSTEM_CONTRACTS_OFFSET = 32768; // 2^15 /// @dev Unlike the value above, it is not overridden for the purpose of testing and /// is identical to the constant value actually used as the system contracts offset on /// mainnet. uint160 constant REAL_SYSTEM_CONTRACTS_OFFSET = 0x8000; /// @dev All the system contracts must be located in the kernel space, /// i.e. their addresses must be below 2^16. uint160 constant MAX_SYSTEM_CONTRACT_ADDRESS = 0xffff; // 2^16 - 1 address constant ECRECOVER_SYSTEM_CONTRACT = address(0x01); address constant SHA256_SYSTEM_CONTRACT = address(0x02); address constant ECADD_SYSTEM_CONTRACT = address(0x06); address constant ECMUL_SYSTEM_CONTRACT = address(0x07); address constant ECPAIRING_SYSTEM_CONTRACT = address(0x08); /// @dev The number of gas that need to be spent for a single byte of pubdata regardless of the pubdata price. /// This variable is used to ensure the following: /// - That the long-term storage of the operator is compensated properly. /// - That it is not possible that the pubdata counter grows too high without spending proportional amount of computation. uint256 constant COMPUTATIONAL_PRICE_FOR_PUBDATA = 80; /// @dev The maximal possible address of an L1-like precompie. These precompiles maintain the following properties: /// - Their extcodehash is EMPTY_STRING_KECCAK /// - Their extcodesize is 0 despite having a bytecode formally deployed there. uint256 constant CURRENT_MAX_PRECOMPILE_ADDRESS = 0xff; address payable constant BOOTLOADER_FORMAL_ADDRESS = payable(address(SYSTEM_CONTRACTS_OFFSET + 0x01)); IAccountCodeStorage constant ACCOUNT_CODE_STORAGE_SYSTEM_CONTRACT = IAccountCodeStorage( address(SYSTEM_CONTRACTS_OFFSET + 0x02) ); INonceHolder constant NONCE_HOLDER_SYSTEM_CONTRACT = INonceHolder(address(SYSTEM_CONTRACTS_OFFSET + 0x03)); IKnownCodesStorage constant KNOWN_CODE_STORAGE_CONTRACT = IKnownCodesStorage(address(SYSTEM_CONTRACTS_OFFSET + 0x04)); IImmutableSimulator constant IMMUTABLE_SIMULATOR_SYSTEM_CONTRACT = IImmutableSimulator( address(SYSTEM_CONTRACTS_OFFSET + 0x05) ); IContractDeployer constant DEPLOYER_SYSTEM_CONTRACT = IContractDeployer(address(SYSTEM_CONTRACTS_OFFSET + 0x06)); IContractDeployer constant REAL_DEPLOYER_SYSTEM_CONTRACT = IContractDeployer(address(REAL_SYSTEM_CONTRACTS_OFFSET + 0x06)); // A contract that is allowed to deploy any codehash // on any address. To be used only during an upgrade. address constant FORCE_DEPLOYER = address(SYSTEM_CONTRACTS_OFFSET + 0x07); IL1Messenger constant L1_MESSENGER_CONTRACT = IL1Messenger(address(SYSTEM_CONTRACTS_OFFSET + 0x08)); address constant MSG_VALUE_SYSTEM_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x09); IBaseToken constant BASE_TOKEN_SYSTEM_CONTRACT = IBaseToken(address(SYSTEM_CONTRACTS_OFFSET + 0x0a)); IBaseToken constant REAL_BASE_TOKEN_SYSTEM_CONTRACT = IBaseToken(address(REAL_SYSTEM_CONTRACTS_OFFSET + 0x0a)); // Hardcoded because even for tests we should keep the address. (Instead `SYSTEM_CONTRACTS_OFFSET + 0x10`) // Precompile call depends on it. // And we don't want to mock this contract. address constant KECCAK256_SYSTEM_CONTRACT = address(0x8010); ISystemContext constant SYSTEM_CONTEXT_CONTRACT = ISystemContext(payable(address(SYSTEM_CONTRACTS_OFFSET + 0x0b))); ISystemContext constant REAL_SYSTEM_CONTEXT_CONTRACT = ISystemContext(payable(address(REAL_SYSTEM_CONTRACTS_OFFSET + 0x0b))); IBootloaderUtilities constant BOOTLOADER_UTILITIES = IBootloaderUtilities(address(SYSTEM_CONTRACTS_OFFSET + 0x0c)); // It will be a different value for tests, while shouldn't. But for now, this constant is not used by other contracts, so that's fine. address constant EVENT_WRITER_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x0d); ICompressor constant COMPRESSOR_CONTRACT = ICompressor(address(SYSTEM_CONTRACTS_OFFSET + 0x0e)); IComplexUpgrader constant COMPLEX_UPGRADER_CONTRACT = IComplexUpgrader(address(SYSTEM_CONTRACTS_OFFSET + 0x0f)); IPubdataChunkPublisher constant PUBDATA_CHUNK_PUBLISHER = IPubdataChunkPublisher( address(SYSTEM_CONTRACTS_OFFSET + 0x11) ); /// @dev If the bitwise AND of the extraAbi[2] param when calling the MSG_VALUE_SIMULATOR /// is non-zero, the call will be assumed to be a system one. uint256 constant MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT = 1; /// @dev The maximal msg.value that context can have uint256 constant MAX_MSG_VALUE = type(uint128).max; /// @dev Prefix used during derivation of account addresses using CREATE2 /// @dev keccak256("zksyncCreate2") bytes32 constant CREATE2_PREFIX = 0x2020dba91b30cc0006188af794c2fb30dd8520db7e2c088b7fc7c103c00ca494; /// @dev Prefix used during derivation of account addresses using CREATE /// @dev keccak256("zksyncCreate") bytes32 constant CREATE_PREFIX = 0x63bae3a9951d38e8a3fbb7b70909afc1200610fc5bc55ade242f815974674f23; /// @dev Each state diff consists of 156 bytes of actual data and 116 bytes of unused padding, needed for circuit efficiency. uint256 constant STATE_DIFF_ENTRY_SIZE = 272; enum SystemLogKey { L2_TO_L1_LOGS_TREE_ROOT_KEY, TOTAL_L2_TO_L1_PUBDATA_KEY, STATE_DIFF_HASH_KEY, PACKED_BATCH_AND_L2_BLOCK_TIMESTAMP_KEY, PREV_BATCH_HASH_KEY, CHAINED_PRIORITY_TXN_HASH_KEY, NUMBER_OF_LAYER_1_TXS_KEY, BLOB_ONE_HASH_KEY, BLOB_TWO_HASH_KEY, BLOB_THREE_HASH_KEY, BLOB_FOUR_HASH_KEY, BLOB_FIVE_HASH_KEY, BLOB_SIX_HASH_KEY, EXPECTED_SYSTEM_CONTRACT_UPGRADE_TX_HASH_KEY } /// @dev The number of leaves in the L2->L1 log Merkle tree. /// While formally a tree of any length is acceptable, the node supports only a constant length of 16384 leaves. uint256 constant L2_TO_L1_LOGS_MERKLE_TREE_LEAVES = 16_384; /// @dev The length of the derived key in bytes inside compressed state diffs. uint256 constant DERIVED_KEY_LENGTH = 32; /// @dev The length of the enum index in bytes inside compressed state diffs. uint256 constant ENUM_INDEX_LENGTH = 8; /// @dev The length of value in bytes inside compressed state diffs. uint256 constant VALUE_LENGTH = 32; /// @dev The length of the compressed initial storage write in bytes. uint256 constant COMPRESSED_INITIAL_WRITE_SIZE = DERIVED_KEY_LENGTH + VALUE_LENGTH; /// @dev The length of the compressed repeated storage write in bytes. uint256 constant COMPRESSED_REPEATED_WRITE_SIZE = ENUM_INDEX_LENGTH + VALUE_LENGTH; /// @dev The position from which the initial writes start in the compressed state diffs. uint256 constant INITIAL_WRITE_STARTING_POSITION = 4; /// @dev Each storage diffs consists of the following elements: /// [20bytes address][32bytes key][32bytes derived key][8bytes enum index][32bytes initial value][32bytes final value] /// @dev The offset of the derived key in a storage diff. uint256 constant STATE_DIFF_DERIVED_KEY_OFFSET = 52; /// @dev The offset of the enum index in a storage diff. uint256 constant STATE_DIFF_ENUM_INDEX_OFFSET = 84; /// @dev The offset of the final value in a storage diff. uint256 constant STATE_DIFF_FINAL_VALUE_OFFSET = 124; /// @dev Total number of bytes in a blob. Blob = 4096 field elements * 31 bytes per field element /// @dev EIP-4844 defines it as 131_072 but we use 4096 * 31 within our circuits to always fit within a field element /// @dev Our circuits will prove that a EIP-4844 blob and our internal blob are the same. uint256 constant BLOB_SIZE_BYTES = 126_976; /// @dev Max number of blobs currently supported uint256 constant MAX_NUMBER_OF_BLOBS = 6; // lib/era-contracts/system-contracts/contracts/interfaces/IBootloaderUtilities.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. interface IBootloaderUtilities { function getTransactionHashes( Transaction calldata _transaction ) external view returns (bytes32 txHash, bytes32 signedTxHash); } // lib/era-contracts/system-contracts/contracts/libraries/EfficientCall.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. /** * @author Matter Labs * @custom:security-contact [email protected] * @notice This library is used to perform ultra-efficient calls using zkEVM-specific features. * @dev EVM calls always accept a memory slice as input and return a memory slice as output. * Therefore, even if the user has a ready-made calldata slice, they still need to copy it to memory * before calling. This is especially inefficient for large inputs (proxies, multi-calls, etc.). * In turn, zkEVM operates over a fat pointer, which is a set of (memory page, offset, start, length) in the memory/calldata/returndata. * This allows forwarding the calldata slice as is, without copying it to memory. * @dev Fat pointer is not just an integer, it is an extended data type supported on the VM level. * zkEVM creates the wellformed fat pointers for all the calldata/returndata regions, later * the contract may manipulate the already created fat pointers to forward a slice of the data, but not * to create new fat pointers! * @dev The allowed operation on fat pointers are: * 1. `ptr.add` - Transforms `ptr.offset` into `ptr.offset + u32(_value)`. If overflow happens then it panics. * 2. `ptr.sub` - Transforms `ptr.offset` into `ptr.offset - u32(_value)`. If underflow happens then it panics. * 3. `ptr.pack` - Do the concatenation between the lowest 128 bits of the pointer itself and the highest 128 bits of `_value`. It is typically used to prepare the ABI for external calls. * 4. `ptr.shrink` - Transforms `ptr.length` into `ptr.length - u32(_shrink)`. If underflow happens then it panics. * @dev The call opcodes accept the fat pointer and change it to its canonical form before passing it to the child call * 1. `ptr.start` is transformed into `ptr.offset + ptr.start` * 2. `ptr.length` is transformed into `ptr.length - ptr.offset` * 3. `ptr.offset` is transformed into `0` */ library EfficientCall { /// @notice Call the `keccak256` without copying calldata to memory. /// @param _data The preimage data. /// @return The `keccak256` hash. function keccak(bytes calldata _data) internal view returns (bytes32) { bytes memory returnData = staticCall(gasleft(), KECCAK256_SYSTEM_CONTRACT, _data); if (returnData.length != 32) { revert Keccak256InvalidReturnData(); } return bytes32(returnData); } /// @notice Call the `sha256` precompile without copying calldata to memory. /// @param _data The preimage data. /// @return The `sha256` hash. function sha(bytes calldata _data) internal view returns (bytes32) { bytes memory returnData = staticCall(gasleft(), SHA256_SYSTEM_CONTRACT, _data); if (returnData.length != 32) { revert ShaInvalidReturnData(); } return bytes32(returnData); } /// @notice Perform a `call` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _value The `msg.value` to send. /// @param _data The calldata to use for the call. /// @param _isSystem Whether the call should contain the `isSystem` flag. /// @return returnData The copied to memory return data. function call( uint256 _gas, address _address, uint256 _value, bytes calldata _data, bool _isSystem ) internal returns (bytes memory returnData) { bool success = rawCall({_gas: _gas, _address: _address, _value: _value, _data: _data, _isSystem: _isSystem}); returnData = _verifyCallResult(success); } /// @notice Perform a `staticCall` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @return returnData The copied to memory return data. function staticCall( uint256 _gas, address _address, bytes calldata _data ) internal view returns (bytes memory returnData) { bool success = rawStaticCall(_gas, _address, _data); returnData = _verifyCallResult(success); } /// @notice Perform a `delegateCall` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @return returnData The copied to memory return data. function delegateCall( uint256 _gas, address _address, bytes calldata _data ) internal returns (bytes memory returnData) { bool success = rawDelegateCall(_gas, _address, _data); returnData = _verifyCallResult(success); } /// @notice Perform a `mimicCall` (a call with custom msg.sender) without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @param _whoToMimic The `msg.sender` for the next call. /// @param _isConstructor Whether the call should contain the `isConstructor` flag. /// @param _isSystem Whether the call should contain the `isSystem` flag. /// @return returnData The copied to memory return data. function mimicCall( uint256 _gas, address _address, bytes calldata _data, address _whoToMimic, bool _isConstructor, bool _isSystem ) internal returns (bytes memory returnData) { bool success = rawMimicCall({ _gas: _gas, _address: _address, _data: _data, _whoToMimic: _whoToMimic, _isConstructor: _isConstructor, _isSystem: _isSystem }); returnData = _verifyCallResult(success); } /// @notice Perform a `call` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _value The `msg.value` to send. /// @param _data The calldata to use for the call. /// @param _isSystem Whether the call should contain the `isSystem` flag. /// @return success whether the call was successful. function rawCall( uint256 _gas, address _address, uint256 _value, bytes calldata _data, bool _isSystem ) internal returns (bool success) { if (_value == 0) { _loadFarCallABIIntoActivePtr(_gas, _data, false, _isSystem); address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS; assembly { success := call(_address, callAddr, 0, 0, 0xFFFF, 0, 0) } } else { _loadFarCallABIIntoActivePtr(_gas, _data, false, true); // If there is provided `msg.value` call the `MsgValueSimulator` to forward ether. address msgValueSimulator = MSG_VALUE_SYSTEM_CONTRACT; address callAddr = SYSTEM_CALL_BY_REF_CALL_ADDRESS; // We need to supply the mask to the MsgValueSimulator to denote // that the call should be a system one. uint256 forwardMask = _isSystem ? MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT : 0; assembly { success := call(msgValueSimulator, callAddr, _value, _address, 0xFFFF, forwardMask, 0) } } } /// @notice Perform a `staticCall` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @return success whether the call was successful. function rawStaticCall(uint256 _gas, address _address, bytes calldata _data) internal view returns (bool success) { _loadFarCallABIIntoActivePtr(_gas, _data, false, false); address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS; assembly { success := staticcall(_address, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Perform a `delegatecall` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @return success whether the call was successful. function rawDelegateCall(uint256 _gas, address _address, bytes calldata _data) internal returns (bool success) { _loadFarCallABIIntoActivePtr(_gas, _data, false, false); address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS; assembly { success := delegatecall(_address, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Perform a `mimicCall` (call with custom msg.sender) without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @param _whoToMimic The `msg.sender` for the next call. /// @param _isConstructor Whether the call should contain the `isConstructor` flag. /// @param _isSystem Whether the call should contain the `isSystem` flag. /// @return success whether the call was successful. /// @dev If called not in kernel mode, it will result in a revert (enforced by the VM) function rawMimicCall( uint256 _gas, address _address, bytes calldata _data, address _whoToMimic, bool _isConstructor, bool _isSystem ) internal returns (bool success) { _loadFarCallABIIntoActivePtr(_gas, _data, _isConstructor, _isSystem); address callAddr = MIMIC_CALL_BY_REF_CALL_ADDRESS; uint256 cleanupMask = ADDRESS_MASK; assembly { // Clearing values before usage in assembly, since Solidity // doesn't do it by default _whoToMimic := and(_whoToMimic, cleanupMask) success := call(_address, callAddr, 0, 0, _whoToMimic, 0, 0) } } /// @dev Verify that a low-level call was successful, and revert if it wasn't, by bubbling the revert reason. /// @param _success Whether the call was successful. /// @return returnData The copied to memory return data. function _verifyCallResult(bool _success) private pure returns (bytes memory returnData) { if (_success) { uint256 size; assembly { size := returndatasize() } returnData = new bytes(size); assembly { returndatacopy(add(returnData, 0x20), 0, size) } } else { propagateRevert(); } } /// @dev Propagate the revert reason from the current call to the caller. function propagateRevert() internal pure { assembly { let size := returndatasize() returndatacopy(0, 0, size) revert(0, size) } } /// @dev Load the far call ABI into active ptr, that will be used for the next call by reference. /// @param _gas The gas to be passed to the call. /// @param _data The calldata to be passed to the call. /// @param _isConstructor Whether the call is a constructor call. /// @param _isSystem Whether the call is a system call. function _loadFarCallABIIntoActivePtr( uint256 _gas, bytes calldata _data, bool _isConstructor, bool _isSystem ) private view { SystemContractHelper.loadCalldataIntoActivePtr(); uint256 dataOffset; assembly { dataOffset := _data.offset } // Safe to cast, offset is never bigger than `type(uint32).max` SystemContractHelper.ptrAddIntoActive(uint32(dataOffset)); // Safe to cast, `data.length` is never bigger than `type(uint32).max` uint32 shrinkTo = uint32(msg.data.length - (_data.length + dataOffset)); SystemContractHelper.ptrShrinkIntoActive(shrinkTo); uint32 gas = Utils.safeCastToU32(_gas); uint256 farCallAbi = SystemContractsCaller.getFarCallABIWithEmptyFatPointer({ gasPassed: gas, // Only rollup is supported for now shardId: 0, forwardingMode: CalldataForwardingMode.ForwardFatPointer, isConstructorCall: _isConstructor, isSystemCall: _isSystem }); SystemContractHelper.ptrPackIntoActivePtr(farCallAbi); } } // lib/era-contracts/system-contracts/contracts/libraries/SystemContractHelper.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. uint256 constant UINT32_MASK = type(uint32).max; uint256 constant UINT64_MASK = type(uint64).max; uint256 constant UINT128_MASK = type(uint128).max; uint256 constant ADDRESS_MASK = type(uint160).max; /// @notice NOTE: The `getZkSyncMeta` that is used to obtain this struct will experience a breaking change in 2024. struct ZkSyncMeta { uint32 pubdataPublished; uint32 heapSize; uint32 auxHeapSize; uint8 shardId; uint8 callerShardId; uint8 codeShardId; } enum Global { CalldataPtr, CallFlags, ExtraABIData1, ExtraABIData2, ReturndataPtr } /** * @author Matter Labs * @custom:security-contact [email protected] * @notice Library used for accessing zkEVM-specific opcodes, needed for the development * of system contracts. * @dev While this library will be eventually available to public, some of the provided * methods won't work for non-system contracts and also breaking changes at short notice are possible. * We do not recommend this library for external use. */ library SystemContractHelper { /// @notice Send an L2Log to L1. /// @param _isService The `isService` flag. /// @param _key The `key` part of the L2Log. /// @param _value The `value` part of the L2Log. /// @dev The meaning of all these parameters is context-dependent, but they /// have no intrinsic meaning per se. function toL1(bool _isService, bytes32 _key, bytes32 _value) internal { address callAddr = TO_L1_CALL_ADDRESS; assembly { // Ensuring that the type is bool _isService := and(_isService, 1) // This `success` is always 0, but the method always succeeds // (except for the cases when there is not enough gas) // solhint-disable-next-line no-unused-vars let success := call(_isService, callAddr, _key, _value, 0xFFFF, 0, 0) } } /// @notice Get address of the currently executed code. /// @dev This allows differentiating between `call` and `delegatecall`. /// During the former `this` and `codeAddress` are the same, while /// during the latter they are not. function getCodeAddress() internal view returns (address addr) { address callAddr = CODE_ADDRESS_CALL_ADDRESS; assembly { addr := staticcall(0, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Provide a compiler hint, by placing calldata fat pointer into virtual `ACTIVE_PTR`, /// that can be manipulated by `ptr.add`/`ptr.sub`/`ptr.pack`/`ptr.shrink` later. /// @dev This allows making a call by forwarding calldata pointer to the child call. /// It is a much more efficient way to forward calldata, than standard EVM bytes copying. function loadCalldataIntoActivePtr() internal view { address callAddr = LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS; assembly { pop(staticcall(0, callAddr, 0, 0xFFFF, 0, 0)) } } /// @notice Compiler simulation of the `ptr.pack` opcode for the virtual `ACTIVE_PTR` pointer. /// @dev Do the concatenation between lowest part of `ACTIVE_PTR` and highest part of `_farCallAbi` /// forming packed fat pointer for a far call or ret ABI when necessary. /// Note: Panics if the lowest 128 bits of `_farCallAbi` are not zeroes. function ptrPackIntoActivePtr(uint256 _farCallAbi) internal view { address callAddr = PTR_PACK_INTO_ACTIVE_CALL_ADDRESS; assembly { pop(staticcall(_farCallAbi, callAddr, 0, 0xFFFF, 0, 0)) } } /// @notice Compiler simulation of the `ptr.add` opcode for the virtual `ACTIVE_PTR` pointer. /// @dev Transforms `ACTIVE_PTR.offset` into `ACTIVE_PTR.offset + u32(_value)`. If overflow happens then it panics. function ptrAddIntoActive(uint32 _value) internal view { address callAddr = PTR_ADD_INTO_ACTIVE_CALL_ADDRESS; uint256 cleanupMask = UINT32_MASK; assembly { // Clearing input params as they are not cleaned by Solidity by default _value := and(_value, cleanupMask) pop(staticcall(_value, callAddr, 0, 0xFFFF, 0, 0)) } } /// @notice Compiler simulation of the `ptr.shrink` opcode for the virtual `ACTIVE_PTR` pointer. /// @dev Transforms `ACTIVE_PTR.length` into `ACTIVE_PTR.length - u32(_shrink)`. If underflow happens then it panics. function ptrShrinkIntoActive(uint32 _shrink) internal view { address callAddr = PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS; uint256 cleanupMask = UINT32_MASK; assembly { // Clearing input params as they are not cleaned by Solidity by default _shrink := and(_shrink, cleanupMask) pop(staticcall(_shrink, callAddr, 0, 0xFFFF, 0, 0)) } } /// @notice packs precompile parameters into one word /// @param _inputMemoryOffset The memory offset in 32-byte words for the input data for calling the precompile. /// @param _inputMemoryLength The length of the input data in words. /// @param _outputMemoryOffset The memory offset in 32-byte words for the output data. /// @param _outputMemoryLength The length of the output data in words. /// @param _perPrecompileInterpreted The constant, the meaning of which is defined separately for /// each precompile. For information, please read the documentation of the precompilecall log in /// the VM. function packPrecompileParams( uint32 _inputMemoryOffset, uint32 _inputMemoryLength, uint32 _outputMemoryOffset, uint32 _outputMemoryLength, uint64 _perPrecompileInterpreted ) internal pure returns (uint256 rawParams) { rawParams = _inputMemoryOffset; rawParams |= uint256(_inputMemoryLength) << 32; rawParams |= uint256(_outputMemoryOffset) << 64; rawParams |= uint256(_outputMemoryLength) << 96; rawParams |= uint256(_perPrecompileInterpreted) << 192; } /// @notice Call precompile with given parameters. /// @param _rawParams The packed precompile params. They can be retrieved by /// the `packPrecompileParams` method. /// @param _gasToBurn The number of gas to burn during this call. /// @param _pubdataToSpend The number of pubdata bytes to burn during the call. /// @return success Whether the call was successful. /// @dev The list of currently available precompiles sha256, keccak256, ecrecover. /// NOTE: The precompile type depends on `this` which calls precompile, which means that only /// system contracts corresponding to the list of precompiles above can do `precompileCall`. /// @dev If used not in the `sha256`, `keccak256` or `ecrecover` contracts, it will just burn the gas provided. /// @dev This method is `unsafe` because it does not check whether there is enough gas to burn. function unsafePrecompileCall( uint256 _rawParams, uint32 _gasToBurn, uint32 _pubdataToSpend ) internal view returns (bool success) { address callAddr = PRECOMPILE_CALL_ADDRESS; uint256 params = uint256(_gasToBurn) + (uint256(_pubdataToSpend) << 32); uint256 cleanupMask = UINT64_MASK; assembly { // Clearing input params as they are not cleaned by Solidity by default params := and(params, cleanupMask) success := staticcall(_rawParams, callAddr, params, 0xFFFF, 0, 0) } } /// @notice Set `msg.value` to next far call. /// @param _value The msg.value that will be used for the *next* call. /// @dev If called not in kernel mode, it will result in a revert (enforced by the VM) function setValueForNextFarCall(uint128 _value) internal returns (bool success) { uint256 cleanupMask = UINT128_MASK; address callAddr = SET_CONTEXT_VALUE_CALL_ADDRESS; assembly { // Clearing input params as they are not cleaned by Solidity by default _value := and(_value, cleanupMask) success := call(0, callAddr, _value, 0, 0xFFFF, 0, 0) } } /// @notice Initialize a new event. /// @param initializer The event initializing value. /// @param value1 The first topic or data chunk. function eventInitialize(uint256 initializer, uint256 value1) internal { address callAddr = EVENT_INITIALIZE_ADDRESS; assembly { pop(call(initializer, callAddr, value1, 0, 0xFFFF, 0, 0)) } } /// @notice Continue writing the previously initialized event. /// @param value1 The first topic or data chunk. /// @param value2 The second topic or data chunk. function eventWrite(uint256 value1, uint256 value2) internal { address callAddr = EVENT_WRITE_ADDRESS; assembly { pop(call(value1, callAddr, value2, 0, 0xFFFF, 0, 0)) } } /// @notice Get the packed representation of the `ZkSyncMeta` from the current context. /// @notice NOTE: The behavior of this function will experience a breaking change in 2024. /// @return meta The packed representation of the ZkSyncMeta. /// @dev The fields in ZkSyncMeta are NOT tightly packed, i.e. there is a special rule on how /// they are packed. For more information, please read the documentation on ZkSyncMeta. function getZkSyncMetaBytes() internal view returns (uint256 meta) { address callAddr = META_CALL_ADDRESS; assembly { meta := staticcall(0, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Returns the bits [offset..offset+size-1] of the meta. /// @param meta Packed representation of the ZkSyncMeta. /// @param offset The offset of the bits. /// @param size The size of the extracted number in bits. /// @return result The extracted number. function extractNumberFromMeta(uint256 meta, uint256 offset, uint256 size) internal pure returns (uint256 result) { // Firstly, we delete all the bits after the field uint256 shifted = (meta << (256 - size - offset)); // Then we shift everything back result = (shifted >> (256 - size)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of pubdata /// bytes published in the batch so far. /// @notice NOTE: The behavior of this function will experience a breaking change in 2024. /// @param meta Packed representation of the ZkSyncMeta. /// @return pubdataPublished The amount of pubdata published in the system so far. function getPubdataPublishedFromMeta(uint256 meta) internal pure returns (uint32 pubdataPublished) { pubdataPublished = uint32(extractNumberFromMeta(meta, META_PUBDATA_PUBLISHED_OFFSET, 32)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of the current size /// of the heap in bytes. /// @param meta Packed representation of the ZkSyncMeta. /// @return heapSize The size of the memory in bytes byte. /// @dev The following expression: getHeapSizeFromMeta(getZkSyncMetaBytes()) is /// equivalent to the MSIZE in Solidity. function getHeapSizeFromMeta(uint256 meta) internal pure returns (uint32 heapSize) { heapSize = uint32(extractNumberFromMeta(meta, META_HEAP_SIZE_OFFSET, 32)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of the current size /// of the auxiliary heap in bytes. /// @param meta Packed representation of the ZkSyncMeta. /// @return auxHeapSize The size of the auxiliary memory in bytes byte. /// @dev You can read more on auxiliary memory in the VM1.2 documentation. function getAuxHeapSizeFromMeta(uint256 meta) internal pure returns (uint32 auxHeapSize) { auxHeapSize = uint32(extractNumberFromMeta(meta, META_AUX_HEAP_SIZE_OFFSET, 32)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of `this`. /// @param meta Packed representation of the ZkSyncMeta. /// @return shardId The shardId of `this`. /// @dev Currently only shard 0 (zkRollup) is supported. function getShardIdFromMeta(uint256 meta) internal pure returns (uint8 shardId) { shardId = uint8(extractNumberFromMeta(meta, META_SHARD_ID_OFFSET, 8)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of /// the msg.sender. /// @param meta Packed representation of the ZkSyncMeta. /// @return callerShardId The shardId of the msg.sender. /// @dev Currently only shard 0 (zkRollup) is supported. function getCallerShardIdFromMeta(uint256 meta) internal pure returns (uint8 callerShardId) { callerShardId = uint8(extractNumberFromMeta(meta, META_CALLER_SHARD_ID_OFFSET, 8)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of /// the currently executed code. /// @param meta Packed representation of the ZkSyncMeta. /// @return codeShardId The shardId of the currently executed code. /// @dev Currently only shard 0 (zkRollup) is supported. function getCodeShardIdFromMeta(uint256 meta) internal pure returns (uint8 codeShardId) { codeShardId = uint8(extractNumberFromMeta(meta, META_CODE_SHARD_ID_OFFSET, 8)); } /// @notice Retrieves the ZkSyncMeta structure. /// @notice NOTE: The behavior of this function will experience a breaking change in 2024. /// @return meta The ZkSyncMeta execution context parameters. function getZkSyncMeta() internal view returns (ZkSyncMeta memory meta) { uint256 metaPacked = getZkSyncMetaBytes(); meta.pubdataPublished = getPubdataPublishedFromMeta(metaPacked); meta.heapSize = getHeapSizeFromMeta(metaPacked); meta.auxHeapSize = getAuxHeapSizeFromMeta(metaPacked); meta.shardId = getShardIdFromMeta(metaPacked); meta.callerShardId = getCallerShardIdFromMeta(metaPacked); meta.codeShardId = getCodeShardIdFromMeta(metaPacked); } /// @notice Returns the call flags for the current call. /// @return callFlags The bitmask of the callflags. /// @dev Call flags is the value of the first register /// at the start of the call. /// @dev The zero bit of the callFlags indicates whether the call is /// a constructor call. The first bit of the callFlags indicates whether /// the call is a system one. function getCallFlags() internal view returns (uint256 callFlags) { address callAddr = CALLFLAGS_CALL_ADDRESS; assembly { callFlags := staticcall(0, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Returns the current calldata pointer. /// @return ptr The current calldata pointer. /// @dev NOTE: This file is just an integer and it cannot be used /// to forward the calldata to the next calls in any way. function getCalldataPtr() internal view returns (uint256 ptr) { address callAddr = PTR_CALLDATA_CALL_ADDRESS; assembly { ptr := staticcall(0, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Returns the N-th extraAbiParam for the current call. /// @return extraAbiData The value of the N-th extraAbiParam for this call. /// @dev It is equal to the value of the (N+2)-th register /// at the start of the call. function getExtraAbiData(uint256 index) internal view returns (uint256 extraAbiData) { // Note that there are only 10 accessible registers (indices 0-9 inclusively) if (index > 9) { revert IndexOutOfBounds(); } address callAddr = GET_EXTRA_ABI_DATA_ADDRESS; assembly { extraAbiData := staticcall(index, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Returns whether the current call is a system call. /// @return `true` or `false` based on whether the current call is a system call. function isSystemCall() internal view returns (bool) { uint256 callFlags = getCallFlags(); // When the system call is passed, the 2-bit is set to 1 return (callFlags & 2) != 0; } /// @notice Returns whether the address is a system contract. /// @param _address The address to test /// @return `true` or `false` based on whether the `_address` is a system contract. function isSystemContract(address _address) internal pure returns (bool) { return uint160(_address) <= uint160(MAX_SYSTEM_CONTRACT_ADDRESS); } /// @notice Method used for burning a certain amount of gas. /// @param _gasToPay The number of gas to burn. /// @param _pubdataToSpend The number of pubdata bytes to burn during the call. function burnGas(uint32 _gasToPay, uint32 _pubdataToSpend) internal view { bool precompileCallSuccess = unsafePrecompileCall( 0, // The precompile parameters are formal ones. We only need the precompile call to burn gas. _gasToPay, _pubdataToSpend ); if (!precompileCallSuccess) { revert FailedToChargeGas(); } } } // lib/era-contracts/system-contracts/contracts/libraries/SystemContractsCaller.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. // Addresses used for the compiler to be replaced with the // ZKsync-specific opcodes during the compilation. // IMPORTANT: these are just compile-time constants and are used // only if used in-place by Yul optimizer. address constant TO_L1_CALL_ADDRESS = address((1 << 16) - 1); address constant CODE_ADDRESS_CALL_ADDRESS = address((1 << 16) - 2); address constant PRECOMPILE_CALL_ADDRESS = address((1 << 16) - 3); address constant META_CALL_ADDRESS = address((1 << 16) - 4); address constant MIMIC_CALL_CALL_ADDRESS = address((1 << 16) - 5); address constant SYSTEM_MIMIC_CALL_CALL_ADDRESS = address((1 << 16) - 6); address constant MIMIC_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 7); address constant SYSTEM_MIMIC_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 8); address constant RAW_FAR_CALL_CALL_ADDRESS = address((1 << 16) - 9); address constant RAW_FAR_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 10); address constant SYSTEM_CALL_CALL_ADDRESS = address((1 << 16) - 11); address constant SYSTEM_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 12); address constant SET_CONTEXT_VALUE_CALL_ADDRESS = address((1 << 16) - 13); address constant SET_PUBDATA_PRICE_CALL_ADDRESS = address((1 << 16) - 14); address constant INCREMENT_TX_COUNTER_CALL_ADDRESS = address((1 << 16) - 15); address constant PTR_CALLDATA_CALL_ADDRESS = address((1 << 16) - 16); address constant CALLFLAGS_CALL_ADDRESS = address((1 << 16) - 17); address constant PTR_RETURNDATA_CALL_ADDRESS = address((1 << 16) - 18); address constant EVENT_INITIALIZE_ADDRESS = address((1 << 16) - 19); address constant EVENT_WRITE_ADDRESS = address((1 << 16) - 20); address constant LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS = address((1 << 16) - 21); address constant LOAD_LATEST_RETURNDATA_INTO_ACTIVE_PTR_CALL_ADDRESS = address((1 << 16) - 22); address constant PTR_ADD_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 23); address constant PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 24); address constant PTR_PACK_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 25); address constant MULTIPLICATION_HIGH_ADDRESS = address((1 << 16) - 26); address constant GET_EXTRA_ABI_DATA_ADDRESS = address((1 << 16) - 27); // All the offsets are in bits uint256 constant META_PUBDATA_PUBLISHED_OFFSET = 0 * 8; uint256 constant META_HEAP_SIZE_OFFSET = 8 * 8; uint256 constant META_AUX_HEAP_SIZE_OFFSET = 12 * 8; uint256 constant META_SHARD_ID_OFFSET = 28 * 8; uint256 constant META_CALLER_SHARD_ID_OFFSET = 29 * 8; uint256 constant META_CODE_SHARD_ID_OFFSET = 30 * 8; /// @notice The way to forward the calldata: /// - Use the current heap (i.e. the same as on EVM). /// - Use the auxiliary heap. /// - Forward via a pointer /// @dev Note, that currently, users do not have access to the auxiliary /// heap and so the only type of forwarding that will be used by the users /// are UseHeap and ForwardFatPointer for forwarding a slice of the current calldata /// to the next call. enum CalldataForwardingMode { UseHeap, ForwardFatPointer, UseAuxHeap } /** * @author Matter Labs * @custom:security-contact [email protected] * @notice A library that allows calling contracts with the `isSystem` flag. * @dev It is needed to call ContractDeployer and NonceHolder. */ library SystemContractsCaller { /// @notice Makes a call with the `isSystem` flag. /// @param gasLimit The gas limit for the call. /// @param to The address to call. /// @param value The value to pass with the transaction. /// @param data The calldata. /// @return success Whether the transaction has been successful. /// @dev Note, that the `isSystem` flag can only be set when calling system contracts. function systemCall(uint32 gasLimit, address to, uint256 value, bytes memory data) internal returns (bool success) { address callAddr = SYSTEM_CALL_CALL_ADDRESS; uint32 dataStart; assembly { dataStart := add(data, 0x20) } uint32 dataLength = Utils.safeCastToU32(data.length); uint256 farCallAbi = SystemContractsCaller.getFarCallABI({ dataOffset: 0, memoryPage: 0, dataStart: dataStart, dataLength: dataLength, gasPassed: gasLimit, // Only rollup is supported for now shardId: 0, forwardingMode: CalldataForwardingMode.UseHeap, isConstructorCall: false, isSystemCall: true }); if (value == 0) { // Doing the system call directly assembly { success := call(to, callAddr, 0, 0, farCallAbi, 0, 0) } } else { address msgValueSimulator = MSG_VALUE_SYSTEM_CONTRACT; // We need to supply the mask to the MsgValueSimulator to denote // that the call should be a system one. uint256 forwardMask = MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT; assembly { success := call(msgValueSimulator, callAddr, value, to, farCallAbi, forwardMask, 0) } } } /// @notice Makes a call with the `isSystem` flag. /// @param gasLimit The gas limit for the call. /// @param to The address to call. /// @param value The value to pass with the transaction. /// @param data The calldata. /// @return success Whether the transaction has been successful. /// @return returnData The returndata of the transaction (revert reason in case the transaction has failed). /// @dev Note, that the `isSystem` flag can only be set when calling system contracts. function systemCallWithReturndata( uint32 gasLimit, address to, uint128 value, bytes memory data ) internal returns (bool success, bytes memory returnData) { success = systemCall(gasLimit, to, value, data); uint256 size; assembly { size := returndatasize() } returnData = new bytes(size); assembly { returndatacopy(add(returnData, 0x20), 0, size) } } /// @notice Makes a call with the `isSystem` flag. /// @param gasLimit The gas limit for the call. /// @param to The address to call. /// @param value The value to pass with the transaction. /// @param data The calldata. /// @return returnData The returndata of the transaction. In case the transaction reverts, the error /// bubbles up to the parent frame. /// @dev Note, that the `isSystem` flag can only be set when calling system contracts. function systemCallWithPropagatedRevert( uint32 gasLimit, address to, uint128 value, bytes memory data ) internal returns (bytes memory returnData) { bool success; (success, returnData) = systemCallWithReturndata(gasLimit, to, value, data); if (!success) { assembly { let size := mload(returnData) revert(add(returnData, 0x20), size) } } } /// @notice Calculates the packed representation of the FarCallABI. /// @param dataOffset Calldata offset in memory. Provide 0 unless using custom pointer. /// @param memoryPage Memory page to use. Provide 0 unless using custom pointer. /// @param dataStart The start of the calldata slice. Provide the offset in memory /// if not using custom pointer. /// @param dataLength The calldata length. Provide the length of the calldata in bytes /// unless using custom pointer. /// @param gasPassed The gas to pass with the call. /// @param shardId Of the account to call. Currently only 0 is supported. /// @param forwardingMode The forwarding mode to use: /// - provide CalldataForwardingMode.UseHeap when using your current memory /// - provide CalldataForwardingMode.ForwardFatPointer when using custom pointer. /// @param isConstructorCall Whether the call will be a call to the constructor /// (ignored when the caller is not a system contract). /// @param isSystemCall Whether the call will have the `isSystem` flag. /// @return farCallAbi The far call ABI. /// @dev The `FarCallABI` has the following structure: /// pub struct FarCallABI { /// pub memory_quasi_fat_pointer: FatPointer, /// pub gas_passed: u32, /// pub shard_id: u8, /// pub forwarding_mode: FarCallForwardPageType, /// pub constructor_call: bool, /// pub to_system: bool, /// } /// /// The FatPointer struct: /// /// pub struct FatPointer { /// pub offset: u32, // offset relative to `start` /// pub memory_page: u32, // memory page where slice is located /// pub start: u32, // absolute start of the slice /// pub length: u32, // length of the slice /// } /// /// @dev Note, that the actual layout is the following: /// /// [0..32) bits -- the calldata offset /// [32..64) bits -- the memory page to use. Can be left blank in most of the cases. /// [64..96) bits -- the absolute start of the slice /// [96..128) bits -- the length of the slice. /// [128..192) bits -- empty bits. /// [192..224) bits -- gasPassed. /// [224..232) bits -- forwarding_mode /// [232..240) bits -- shard id. /// [240..248) bits -- constructor call flag /// [248..256] bits -- system call flag function getFarCallABI( uint32 dataOffset, uint32 memoryPage, uint32 dataStart, uint32 dataLength, uint32 gasPassed, uint8 shardId, CalldataForwardingMode forwardingMode, bool isConstructorCall, bool isSystemCall ) internal pure returns (uint256 farCallAbi) { // Fill in the call parameter fields farCallAbi = getFarCallABIWithEmptyFatPointer({ gasPassed: gasPassed, shardId: shardId, forwardingMode: forwardingMode, isConstructorCall: isConstructorCall, isSystemCall: isSystemCall }); // Fill in the fat pointer fields farCallAbi |= dataOffset; farCallAbi |= (uint256(memoryPage) << 32); farCallAbi |= (uint256(dataStart) << 64); farCallAbi |= (uint256(dataLength) << 96); } /// @notice Calculates the packed representation of the FarCallABI with zero fat pointer fields. /// @param gasPassed The gas to pass with the call. /// @param shardId Of the account to call. Currently only 0 is supported. /// @param forwardingMode The forwarding mode to use: /// - provide CalldataForwardingMode.UseHeap when using your current memory /// - provide CalldataForwardingMode.ForwardFatPointer when using custom pointer. /// @param isConstructorCall Whether the call will be a call to the constructor /// (ignored when the caller is not a system contract). /// @param isSystemCall Whether the call will have the `isSystem` flag. /// @return farCallAbiWithEmptyFatPtr The far call ABI with zero fat pointer fields. function getFarCallABIWithEmptyFatPointer( uint32 gasPassed, uint8 shardId, CalldataForwardingMode forwardingMode, bool isConstructorCall, bool isSystemCall ) internal pure returns (uint256 farCallAbiWithEmptyFatPtr) { farCallAbiWithEmptyFatPtr |= (uint256(gasPassed) << 192); farCallAbiWithEmptyFatPtr |= (uint256(forwardingMode) << 224); farCallAbiWithEmptyFatPtr |= (uint256(shardId) << 232); if (isConstructorCall) { farCallAbiWithEmptyFatPtr |= (1 << 240); } if (isSystemCall) { farCallAbiWithEmptyFatPtr |= (1 << 248); } } } // lib/era-contracts/system-contracts/contracts/libraries/TransactionHelper.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. /// @dev The type id of ZKsync's EIP-712-signed transaction. uint8 constant EIP_712_TX_TYPE = 0x71; /// @dev The type id of legacy transactions. uint8 constant LEGACY_TX_TYPE = 0x0; /// @dev The type id of legacy transactions. uint8 constant EIP_2930_TX_TYPE = 0x01; /// @dev The type id of EIP1559 transactions. uint8 constant EIP_1559_TX_TYPE = 0x02; /// @notice Structure used to represent a ZKsync transaction. struct Transaction { // The type of the transaction. uint256 txType; // The caller. uint256 from; // The callee. uint256 to; // The gasLimit to pass with the transaction. // It has the same meaning as Ethereum's gasLimit. uint256 gasLimit; // The maximum amount of gas the user is willing to pay for a byte of pubdata. uint256 gasPerPubdataByteLimit; // The maximum fee per gas that the user is willing to pay. // It is akin to EIP1559's maxFeePerGas. uint256 maxFeePerGas; // The maximum priority fee per gas that the user is willing to pay. // It is akin to EIP1559's maxPriorityFeePerGas. uint256 maxPriorityFeePerGas; // The transaction's paymaster. If there is no paymaster, it is equal to 0. uint256 paymaster; // The nonce of the transaction. uint256 nonce; // The value to pass with the transaction. uint256 value; // In the future, we might want to add some // new fields to the struct. The `txData` struct // is to be passed to account and any changes to its structure // would mean a breaking change to these accounts. In order to prevent this, // we should keep some fields as "reserved". // It is also recommended that their length is fixed, since // it would allow easier proof integration (in case we will need // some special circuit for preprocessing transactions). uint256[4] reserved; // The transaction's calldata. bytes data; // The signature of the transaction. bytes signature; // The properly formatted hashes of bytecodes that must be published on L1 // with the inclusion of this transaction. Note, that a bytecode has been published // before, the user won't pay fees for its republishing. bytes32[] factoryDeps; // The input to the paymaster. bytes paymasterInput; // Reserved dynamic type for the future use-case. Using it should be avoided, // But it is still here, just in case we want to enable some additional functionality. bytes reservedDynamic; } /** * @author Matter Labs * @custom:security-contact [email protected] * @notice Library is used to help custom accounts to work with common methods for the Transaction type. */ library TransactionHelper { using SafeERC20 for IERC20; /// @notice The EIP-712 typehash for the contract's domain bytes32 internal constant EIP712_DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,string version,uint256 chainId)"); bytes32 internal constant EIP712_TRANSACTION_TYPE_HASH = keccak256( "Transaction(uint256 txType,uint256 from,uint256 to,uint256 gasLimit,uint256 gasPerPubdataByteLimit,uint256 maxFeePerGas,uint256 maxPriorityFeePerGas,uint256 paymaster,uint256 nonce,uint256 value,bytes data,bytes32[] factoryDeps,bytes paymasterInput)" ); /// @notice Whether the token is Ethereum. /// @param _addr The address of the token /// @return `true` or `false` based on whether the token is Ether. /// @dev This method assumes that address is Ether either if the address is 0 (for convenience) /// or if the address is the address of the L2BaseToken system contract. function isEthToken(uint256 _addr) internal pure returns (bool) { return _addr == uint256(uint160(address(BASE_TOKEN_SYSTEM_CONTRACT))) || _addr == 0; } /// @notice Calculate the suggested signed hash of the transaction, /// i.e. the hash that is signed by EOAs and is recommended to be signed by other accounts. function encodeHash(Transaction calldata _transaction) internal view returns (bytes32 resultHash) { if (_transaction.txType == LEGACY_TX_TYPE) { resultHash = _encodeHashLegacyTransaction(_transaction); } else if (_transaction.txType == EIP_712_TX_TYPE) { resultHash = _encodeHashEIP712Transaction(_transaction); } else if (_transaction.txType == EIP_1559_TX_TYPE) { resultHash = _encodeHashEIP1559Transaction(_transaction); } else if (_transaction.txType == EIP_2930_TX_TYPE) { resultHash = _encodeHashEIP2930Transaction(_transaction); } else { // Currently no other transaction types are supported. // Any new transaction types will be processed in a similar manner. revert UnsupportedTxType(_transaction.txType); } } /// @notice Encode hash of the ZKsync native transaction type. /// @return keccak256 hash of the EIP-712 encoded representation of transaction function _encodeHashEIP712Transaction(Transaction calldata _transaction) private view returns (bytes32) { bytes32 structHash = keccak256( // solhint-disable-next-line func-named-parameters abi.encode( EIP712_TRANSACTION_TYPE_HASH, _transaction.txType, _transaction.from, _transaction.to, _transaction.gasLimit, _transaction.gasPerPubdataByteLimit, _transaction.maxFeePerGas, _transaction.maxPriorityFeePerGas, _transaction.paymaster, _transaction.nonce, _transaction.value, EfficientCall.keccak(_transaction.data), keccak256(abi.encodePacked(_transaction.factoryDeps)), EfficientCall.keccak(_transaction.paymasterInput) ) ); bytes32 domainSeparator = keccak256( abi.encode(EIP712_DOMAIN_TYPEHASH, keccak256("zkSync"), keccak256("2"), block.chainid) ); return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } /// @notice Encode hash of the legacy transaction type. /// @return keccak256 of the serialized RLP encoded representation of transaction function _encodeHashLegacyTransaction(Transaction calldata _transaction) private view returns (bytes32) { // Hash of legacy transactions are encoded as one of the: // - RLP(nonce, gasPrice, gasLimit, to, value, data, chainId, 0, 0) // - RLP(nonce, gasPrice, gasLimit, to, value, data) // // In this RLP encoding, only the first one above list appears, so we encode each element // inside list and then concatenate the length of all elements with them. bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce); // Encode `gasPrice` and `gasLimit` together to prevent "stack too deep error". bytes memory encodedGasParam; { bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas); bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit); encodedGasParam = bytes.concat(encodedGasPrice, encodedGasLimit); } bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to))); bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value); // Encode only the length of the transaction data, and not the data itself, // so as not to copy to memory a potentially huge transaction data twice. bytes memory encodedDataLength; { // Safe cast, because the length of the transaction data can't be so large. uint64 txDataLen = uint64(_transaction.data.length); if (txDataLen != 1) { // If the length is not equal to one, then only using the length can it be encoded definitely. encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen); } else if (_transaction.data[0] >= 0x80) { // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte. encodedDataLength = hex"81"; } // Otherwise the length is not encoded at all. } // Encode `chainId` according to EIP-155, but only if the `chainId` is specified in the transaction. bytes memory encodedChainId; if (_transaction.reserved[0] != 0) { encodedChainId = bytes.concat(RLPEncoder.encodeUint256(block.chainid), hex"80_80"); } bytes memory encodedListLength; unchecked { uint256 listLength = encodedNonce.length + encodedGasParam.length + encodedTo.length + encodedValue.length + encodedDataLength.length + _transaction.data.length + encodedChainId.length; // Safe cast, because the length of the list can't be so large. encodedListLength = RLPEncoder.encodeListLen(uint64(listLength)); } return keccak256( // solhint-disable-next-line func-named-parameters bytes.concat( encodedListLength, encodedNonce, encodedGasParam, encodedTo, encodedValue, encodedDataLength, _transaction.data, encodedChainId ) ); } /// @notice Encode hash of the EIP2930 transaction type. /// @return keccak256 of the serialized RLP encoded representation of transaction function _encodeHashEIP2930Transaction(Transaction calldata _transaction) private view returns (bytes32) { // Hash of EIP2930 transactions is encoded the following way: // H(0x01 || RLP(chain_id, nonce, gas_price, gas_limit, destination, amount, data, access_list)) // // Note, that on ZKsync access lists are not supported and should always be empty. // Encode all fixed-length params to avoid "stack too deep error" bytes memory encodedFixedLengthParams; { bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid); bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce); bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas); bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit); bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to))); bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value); // solhint-disable-next-line func-named-parameters encodedFixedLengthParams = bytes.concat( encodedChainId, encodedNonce, encodedGasPrice, encodedGasLimit, encodedTo, encodedValue ); } // Encode only the length of the transaction data, and not the data itself, // so as not to copy to memory a potentially huge transaction data twice. bytes memory encodedDataLength; { // Safe cast, because the length of the transaction data can't be so large. uint64 txDataLen = uint64(_transaction.data.length); if (txDataLen != 1) { // If the length is not equal to one, then only using the length can it be encoded definitely. encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen); } else if (_transaction.data[0] >= 0x80) { // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte. encodedDataLength = hex"81"; } // Otherwise the length is not encoded at all. } // On ZKsync, access lists are always zero length (at least for now). bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0); bytes memory encodedListLength; unchecked { uint256 listLength = encodedFixedLengthParams.length + encodedDataLength.length + _transaction.data.length + encodedAccessListLength.length; // Safe cast, because the length of the list can't be so large. encodedListLength = RLPEncoder.encodeListLen(uint64(listLength)); } return keccak256( // solhint-disable-next-line func-named-parameters bytes.concat( "\x01", encodedListLength, encodedFixedLengthParams, encodedDataLength, _transaction.data, encodedAccessListLength ) ); } /// @notice Encode hash of the EIP1559 transaction type. /// @return keccak256 of the serialized RLP encoded representation of transaction function _encodeHashEIP1559Transaction(Transaction calldata _transaction) private view returns (bytes32) { // Hash of EIP1559 transactions is encoded the following way: // H(0x02 || RLP(chain_id, nonce, max_priority_fee_per_gas, max_fee_per_gas, gas_limit, destination, amount, data, access_list)) // // Note, that on ZKsync access lists are not supported and should always be empty. // Encode all fixed-length params to avoid "stack too deep error" bytes memory encodedFixedLengthParams; { bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid); bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce); bytes memory encodedMaxPriorityFeePerGas = RLPEncoder.encodeUint256(_transaction.maxPriorityFeePerGas); bytes memory encodedMaxFeePerGas = RLPEncoder.encodeUint256(_transaction.maxFeePerGas); bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit); bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to))); bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value); // solhint-disable-next-line func-named-parameters encodedFixedLengthParams = bytes.concat( encodedChainId, encodedNonce, encodedMaxPriorityFeePerGas, encodedMaxFeePerGas, encodedGasLimit, encodedTo, encodedValue ); } // Encode only the length of the transaction data, and not the data itself, // so as not to copy to memory a potentially huge transaction data twice. bytes memory encodedDataLength; { // Safe cast, because the length of the transaction data can't be so large. uint64 txDataLen = uint64(_transaction.data.length); if (txDataLen != 1) { // If the length is not equal to one, then only using the length can it be encoded definitely. encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen); } else if (_transaction.data[0] >= 0x80) { // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte. encodedDataLength = hex"81"; } // Otherwise the length is not encoded at all. } // On ZKsync, access lists are always zero length (at least for now). bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0); bytes memory encodedListLength; unchecked { uint256 listLength = encodedFixedLengthParams.length + encodedDataLength.length + _transaction.data.length + encodedAccessListLength.length; // Safe cast, because the length of the list can't be so large. encodedListLength = RLPEncoder.encodeListLen(uint64(listLength)); } return keccak256( // solhint-disable-next-line func-named-parameters bytes.concat( "\x02", encodedListLength, encodedFixedLengthParams, encodedDataLength, _transaction.data, encodedAccessListLength ) ); } /// @notice Processes the common paymaster flows, e.g. setting proper allowance /// for tokens, etc. For more information on the expected behavior, check out /// the "Paymaster flows" section in the documentation. function processPaymasterInput(Transaction calldata _transaction) internal { if (_transaction.paymasterInput.length < 4) { revert InvalidInput(); } bytes4 paymasterInputSelector = bytes4(_transaction.paymasterInput[0:4]); if (paymasterInputSelector == IPaymasterFlow.approvalBased.selector) { if (_transaction.paymasterInput.length < 68) { revert InvalidInput(); } // While the actual data consists of address, uint256 and bytes data, // the data is needed only for the paymaster, so we ignore it here for the sake of optimization (address token, uint256 minAllowance) = abi.decode(_transaction.paymasterInput[4:68], (address, uint256)); address paymaster = address(uint160(_transaction.paymaster)); uint256 currentAllowance = IERC20(token).allowance(address(this), paymaster); if (currentAllowance < minAllowance) { // Some tokens, e.g. USDT require that the allowance is firsty set to zero // and only then updated to the new value. IERC20(token).safeApprove(paymaster, 0); IERC20(token).safeApprove(paymaster, minAllowance); } } else if (paymasterInputSelector == IPaymasterFlow.general.selector) { // Do nothing. general(bytes) paymaster flow means that the paymaster must interpret these bytes on his own. } else { revert UnsupportedPaymasterFlow(); } } /// @notice Pays the required fee for the transaction to the bootloader. /// @dev Currently it pays the maximum amount "_transaction.maxFeePerGas * _transaction.gasLimit", /// it will change in the future. function payToTheBootloader(Transaction calldata _transaction) internal returns (bool success) { address bootloaderAddr = BOOTLOADER_FORMAL_ADDRESS; uint256 amount = _transaction.maxFeePerGas * _transaction.gasLimit; assembly { success := call(gas(), bootloaderAddr, amount, 0, 0, 0, 0) } } // Returns the balance required to process the transaction. function totalRequiredBalance(Transaction calldata _transaction) internal pure returns (uint256 requiredBalance) { if (address(uint160(_transaction.paymaster)) != address(0)) { // Paymaster pays for the fee requiredBalance = _transaction.value; } else { // The user should have enough balance for both the fee and the value of the transaction requiredBalance = _transaction.maxFeePerGas * _transaction.gasLimit + _transaction.value; } } } // lib/era-contracts/system-contracts/contracts/libraries/Utils.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. /** * @author Matter Labs * @custom:security-contact [email protected] * @dev Common utilities used in ZKsync system contracts */ library Utils { /// @dev Bit mask of bytecode hash "isConstructor" marker bytes32 internal constant IS_CONSTRUCTOR_BYTECODE_HASH_BIT_MASK = 0x00ff000000000000000000000000000000000000000000000000000000000000; /// @dev Bit mask to set the "isConstructor" marker in the bytecode hash bytes32 internal constant SET_IS_CONSTRUCTOR_MARKER_BIT_MASK = 0x0001000000000000000000000000000000000000000000000000000000000000; function safeCastToU128(uint256 _x) internal pure returns (uint128) { if (_x > type(uint128).max) { revert Overflow(); } return uint128(_x); } function safeCastToU32(uint256 _x) internal pure returns (uint32) { if (_x > type(uint32).max) { revert Overflow(); } return uint32(_x); } function safeCastToU24(uint256 _x) internal pure returns (uint24) { if (_x > type(uint24).max) { revert Overflow(); } return uint24(_x); } /// @return codeLength The bytecode length in bytes function bytecodeLenInBytes(bytes32 _bytecodeHash) internal pure returns (uint256 codeLength) { codeLength = bytecodeLenInWords(_bytecodeHash) << 5; // _bytecodeHash * 32 } /// @return codeLengthInWords The bytecode length in machine words function bytecodeLenInWords(bytes32 _bytecodeHash) internal pure returns (uint256 codeLengthInWords) { unchecked { codeLengthInWords = uint256(uint8(_bytecodeHash[2])) * 256 + uint256(uint8(_bytecodeHash[3])); } } /// @notice Denotes whether bytecode hash corresponds to a contract that already constructed function isContractConstructed(bytes32 _bytecodeHash) internal pure returns (bool) { return _bytecodeHash[1] == 0x00; } /// @notice Denotes whether bytecode hash corresponds to a contract that is on constructor or has already been constructed function isContractConstructing(bytes32 _bytecodeHash) internal pure returns (bool) { return _bytecodeHash[1] == 0x01; } /// @notice Sets "isConstructor" flag to TRUE for the bytecode hash /// @param _bytecodeHash The bytecode hash for which it is needed to set the constructing flag /// @return The bytecode hash with "isConstructor" flag set to TRUE function constructingBytecodeHash(bytes32 _bytecodeHash) internal pure returns (bytes32) { // Clear the "isConstructor" marker and set it to 0x01. return constructedBytecodeHash(_bytecodeHash) | SET_IS_CONSTRUCTOR_MARKER_BIT_MASK; } /// @notice Sets "isConstructor" flag to FALSE for the bytecode hash /// @param _bytecodeHash The bytecode hash for which it is needed to set the constructing flag /// @return The bytecode hash with "isConstructor" flag set to FALSE function constructedBytecodeHash(bytes32 _bytecodeHash) internal pure returns (bytes32) { return _bytecodeHash & ~IS_CONSTRUCTOR_BYTECODE_HASH_BIT_MASK; } /// @notice Validate the bytecode format and calculate its hash. /// @param _bytecode The bytecode to hash. /// @return hashedBytecode The 32-byte hash of the bytecode. /// Note: The function reverts the execution if the bytecode has non expected format: /// - Bytecode bytes length is not a multiple of 32 /// - Bytecode bytes length is not less than 2^21 bytes (2^16 words) /// - Bytecode words length is not odd function hashL2Bytecode(bytes calldata _bytecode) internal view returns (bytes32 hashedBytecode) { // Note that the length of the bytecode must be provided in 32-byte words. if (_bytecode.length % 32 != 0) { revert MalformedBytecode(BytecodeError.Length); } uint256 lengthInWords = _bytecode.length / 32; // bytecode length must be less than 2^16 words if (lengthInWords >= 2 ** 16) { revert MalformedBytecode(BytecodeError.NumberOfWords); } // bytecode length in words must be odd if (lengthInWords % 2 == 0) { revert MalformedBytecode(BytecodeError.WordsMustBeOdd); } hashedBytecode = EfficientCall.sha(_bytecode) & 0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; // Setting the version of the hash hashedBytecode = (hashedBytecode | bytes32(uint256(1 << 248))); // Setting the length hashedBytecode = hashedBytecode | bytes32(lengthInWords << 224); } } // lib/era-contracts/system-contracts/contracts/interfaces/IPaymaster.sol // We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version. enum ExecutionResult { Revert, Success } bytes4 constant PAYMASTER_VALIDATION_SUCCESS_MAGIC = IPaymaster.validateAndPayForPaymasterTransaction.selector; interface IPaymaster { /// @dev Called by the bootloader to verify that the paymaster agrees to pay for the /// fee for the transaction. This transaction should also send the necessary amount of funds onto the bootloader /// address. /// @param _txHash The hash of the transaction /// @param _suggestedSignedHash The hash of the transaction that is signed by an EOA /// @param _transaction The transaction itself. /// @return magic The value that should be equal to the signature of the validateAndPayForPaymasterTransaction /// if the paymaster agrees to pay for the transaction. /// @return context The "context" of the transaction: an array of bytes of length at most 1024 bytes, which will be /// passed to the `postTransaction` method of the account. /// @dev The developer should strive to preserve as many steps as possible both for valid /// and invalid transactions as this very method is also used during the gas fee estimation /// (without some of the necessary data, e.g. signature). function validateAndPayForPaymasterTransaction( bytes32 _txHash, bytes32 _suggestedSignedHash, Transaction calldata _transaction ) external payable returns (bytes4 magic, bytes memory context); /// @dev Called by the bootloader after the execution of the transaction. Please note that /// there is no guarantee that this method will be called at all. Unlike the original EIP4337, /// this method won't be called if the transaction execution results in out-of-gas. /// @param _context, the context of the execution, returned by the "validateAndPayForPaymasterTransaction" method. /// @param _transaction, the users' transaction. /// @param _txResult, the result of the transaction execution (success or failure). /// @param _maxRefundedGas, the upper bound on the amount of gas that could be refunded to the paymaster. /// @dev The exact amount refunded depends on the gas spent by the "postOp" itself and so the developers should /// take that into account. function postTransaction( bytes calldata _context, Transaction calldata _transaction, bytes32 _txHash, bytes32 _suggestedSignedHash, ExecutionResult _txResult, uint256 _maxRefundedGas ) external payable; } // src/zksync/paymaster/ContractSpecificPaymaster.sol contract ContractSpecificPaymaster is IPaymaster { address public owner; // Mapping to track sponsored contracts mapping(address => bool) public sponsoredContracts; error Unauthorized(); error TransferFailed(); error ContractNotSponsored(); event ContractSponsored(address indexed contractAddress); event ContractSponsorshipRevoked(address indexed contractAddress); modifier onlyOwner() { if (msg.sender != owner) { revert Unauthorized(); } _; } constructor() { owner = msg.sender; } function validateAndPayForPaymasterTransaction( bytes32 _txHash, bytes32 _suggestedSignedHash, Transaction calldata _transaction ) external payable override returns (bytes4 magic, bytes memory context) { // Check if the target contract is sponsored address targetContract = address(uint160(_transaction.to)); if (!sponsoredContracts[targetContract]) { revert ContractNotSponsored(); } // Pay for transaction uint256 payment = _transaction.gasLimit * _transaction.maxFeePerGas; (bool success, ) = payable(BOOTLOADER_FORMAL_ADDRESS).call{value: payment}(""); if (!success) { revert TransferFailed(); } return (PAYMASTER_VALIDATION_SUCCESS_MAGIC, ""); } function postTransaction( bytes calldata _context, Transaction calldata _transaction, bytes32 _txHash, bytes32 _suggestedSignedHash, ExecutionResult _txResult, uint256 _maxRefundedGas ) external payable override { // No post-transaction logic needed for this implementation } /// @notice Add a contract to the sponsored list /// @param _contract Address of the contract to sponsor function addSponsoredContract(address _contract) external onlyOwner { sponsoredContracts[_contract] = true; emit ContractSponsored(_contract); } /// @notice Remove a contract from the sponsored list /// @param _contract Address of the contract to remove from sponsorship function removeSponsoredContract(address _contract) external onlyOwner { sponsoredContracts[_contract] = false; emit ContractSponsorshipRevoked(_contract); } /// @notice Withdraw funds from the paymaster /// @param _to Address to send the funds to /// @param _amount Amount of funds to withdraw function withdraw(address payable _to, uint256 _amount) external onlyOwner { (bool success, ) = _to.call{value: _amount}(""); if (!success) { revert TransferFailed(); } } receive() external payable {} }
{ "viaIR": true, "codegen": "yul", "remappings": [ "@openzeppelin/contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/", "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "ds-test/=lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "openzeppelin-foundry-upgrades/=lib/openzeppelin-foundry-upgrades/src/", "solidity-stringutils/=lib/openzeppelin-foundry-upgrades/lib/solidity-stringutils/", "@matterlabs/=lib/era-contracts/", "era-contracts/=lib/era-contracts/", "halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/", "murky/=lib/era-contracts/lib/murky/", "openzeppelin-contracts-upgradeable-v4/=lib/era-contracts/lib/openzeppelin-contracts-upgradeable-v4/", "openzeppelin-contracts-v4/=lib/era-contracts/lib/openzeppelin-contracts-v4/" ], "evmVersion": "cancun", "outputSelection": { "*": { "*": [ "abi", "metadata" ], "": [ "ast" ] } }, "optimizer": { "enabled": true, "mode": "3", "fallback_to_optimizing_for_size": false, "disable_system_request_memoization": true }, "metadata": {}, "libraries": {}, "enableEraVMExtensions": false, "forceEVMLA": false }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ContractNotSponsored","type":"error"},{"inputs":[],"name":"TransferFailed","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"contractAddress","type":"address"}],"name":"ContractSponsored","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"contractAddress","type":"address"}],"name":"ContractSponsorshipRevoked","type":"event"},{"inputs":[{"internalType":"address","name":"_contract","type":"address"}],"name":"addSponsoredContract","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"_context","type":"bytes"},{"components":[{"internalType":"uint256","name":"txType","type":"uint256"},{"internalType":"uint256","name":"from","type":"uint256"},{"internalType":"uint256","name":"to","type":"uint256"},{"internalType":"uint256","name":"gasLimit","type":"uint256"},{"internalType":"uint256","name":"gasPerPubdataByteLimit","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"uint256","name":"paymaster","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256[4]","name":"reserved","type":"uint256[4]"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"bytes32[]","name":"factoryDeps","type":"bytes32[]"},{"internalType":"bytes","name":"paymasterInput","type":"bytes"},{"internalType":"bytes","name":"reservedDynamic","type":"bytes"}],"internalType":"struct Transaction","name":"_transaction","type":"tuple"},{"internalType":"bytes32","name":"_txHash","type":"bytes32"},{"internalType":"bytes32","name":"_suggestedSignedHash","type":"bytes32"},{"internalType":"enum ExecutionResult","name":"_txResult","type":"uint8"},{"internalType":"uint256","name":"_maxRefundedGas","type":"uint256"}],"name":"postTransaction","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_contract","type":"address"}],"name":"removeSponsoredContract","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"sponsoredContracts","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_txHash","type":"bytes32"},{"internalType":"bytes32","name":"_suggestedSignedHash","type":"bytes32"},{"components":[{"internalType":"uint256","name":"txType","type":"uint256"},{"internalType":"uint256","name":"from","type":"uint256"},{"internalType":"uint256","name":"to","type":"uint256"},{"internalType":"uint256","name":"gasLimit","type":"uint256"},{"internalType":"uint256","name":"gasPerPubdataByteLimit","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"uint256","name":"paymaster","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256[4]","name":"reserved","type":"uint256[4]"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"bytes32[]","name":"factoryDeps","type":"bytes32[]"},{"internalType":"bytes","name":"paymasterInput","type":"bytes"},{"internalType":"bytes","name":"reservedDynamic","type":"bytes"}],"internalType":"struct Transaction","name":"_transaction","type":"tuple"}],"name":"validateAndPayForPaymasterTransaction","outputs":[{"internalType":"bytes4","name":"magic","type":"bytes4"},{"internalType":"bytes","name":"context","type":"bytes"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address payable","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
9c4d535b00000000000000000000000000000000000000000000000000000000000000000100009b059b97e2f6bc9ea33d0438adb4203f5edb5ec144e73a63e12bae0a6000000000000000000000000000000000000000000000000000000000000000600000000000000000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x0002000000000002000100000000000200010000000103550000008003000039000000400030043f00000001002001900000003f0000c13d00000060021002700000007802200197000000040020008c0000004c0000413d000000000301043b000000e0033002700000007b0030009c000000500000a13d0000007c0030009c000000760000213d0000007f0030009c000000920000613d000000800030009c000000da0000c13d000000240020008c000000da0000413d0000000002000416000000000002004b000000da0000c13d0000000401100370000000000101043b000000840010009c000000da0000213d000000000200041a00000084022001970000000003000411000000000023004b000001000000c13d0000008401100197000100000001001d000000000010043f0000000101000039000000200010043f0000000001000414000000780010009c0000007801008041000000c00110021000000087011001c7000080100200003901dc01d70000040f0000000100200190000000da0000613d000000000101043b000000000201041a000000980220019700000001022001bf000000000021041b0000000001000414000000780010009c0000007801008041000000c00110021000000085011001c70000800d0200003900000002030000390000008b04000041000000fb0000013d0000000001000416000000000001004b000000da0000c13d000000000100041a00000079011001970000000002000411000000000121019f000000000010041b0000002001000039000001000010044300000120000004430000007a01000041000001dd0001042e000000000002004b000000da0000c13d0000000001000019000001dd0001042e000000810030009c0000009a0000613d000000820030009c000000bd0000613d000000830030009c000000da0000c13d000000c40020008c000000da0000413d0000000403100370000000000303043b000000860030009c000000da0000213d0000002304300039000000000024004b000000da0000813d0000000404300039000000000441034f000000000404043b000000860040009c000000da0000213d00000000034300190000002403300039000000000023004b000000da0000213d0000002403100370000000000303043b000000860030009c000000da0000213d00000000023200490000008d0020009c000000da0000213d000002640020008c000000da0000413d0000008401100370000000000101043b000000010010008c0000004e0000a13d000000da0000013d0000007d0030009c000000d10000613d0000007e0030009c000000da0000c13d000000440020008c000000da0000413d0000000003000416000000000003004b000000da0000c13d0000000403100370000000000303043b000000840030009c000000da0000213d000000000400041a00000084044001970000000005000411000000000045004b000001000000c13d00000084043001970000002403100370000000000303043b0000000005000414000000040040008c000001040000c13d000000000121034f000000010200003900000000030000310000011d0000013d0000000001000416000000000001004b000000da0000c13d000000000100041a0000008401100197000000800010043f0000008c01000041000001dd0001042e000000640020008c000000da0000413d0000004403100370000000000303043b000000860030009c000000da0000213d00000000023200490000008d0020009c000000da0000213d000002640020008c000000da0000413d000100440030003d0000000101100360000000000101043b0000008401100197000000000010043f0000000101000039000000200010043f0000000001000414000000780010009c0000007801008041000000c00110021000000087011001c7000080100200003901dc01d70000040f0000000100200190000000da0000613d000000000101043b000000000101041a000000ff001001900000010b0000c13d0000009701000041000000800010043f0000008a01000041000001de00010430000000240020008c000000da0000413d0000000002000416000000000002004b000000da0000c13d0000000401100370000000000101043b000000840010009c000000da0000213d000000000010043f0000000101000039000000200010043f01dc01c50000040f000000000101041a000000ff001001900000000001000039000000010100c039000000800010043f0000008c01000041000001dd0001042e000000240020008c000000da0000413d0000000002000416000000000002004b000000da0000c13d0000000401100370000000000101043b000000840010009c000000dc0000a13d0000000001000019000001de00010430000000000200041a00000084022001970000000003000411000000000023004b000001000000c13d0000008401100197000100000001001d000000000010043f0000000101000039000000200010043f0000000001000414000000780010009c0000007801008041000000c00110021000000087011001c7000080100200003901dc01d70000040f0000000100200190000000da0000613d000000000101043b000000000201041a0000009802200197000000000021041b0000000001000414000000780010009c0000007801008041000000c00110021000000085011001c70000800d0200003900000002030000390000008804000041000000010500002901dc01d20000040f00000001002001900000004e0000c13d000000da0000013d0000008901000041000000800010043f0000008a01000041000001de00010430000000780050009c0000007805008041000000c001500210000000000003004b000001160000c13d0000000002040019000001190000013d00000001040000290000002001400039000000010310036700000060014000390000000101100367000000000101043b000000000203043b000000000002004b0000014b0000c13d0000000001000414000001520000013d00000085011001c70000800902000039000000000500001901dc01d20000040f0000006003100270000000780030019d0000007803300197000000000003004b000001230000c13d00000001002001900000004e0000c13d000000400300043d000001840000013d000000860030009c000001b10000213d0000001f0530003900000099055001970000003f055000390000009906500197000000400500043d0000000006650019000000000056004b00000000070000390000000107004039000000860060009c000001b10000213d0000000100700190000001b10000c13d000000400060043f000000000635043600000099043001980000001f0530018f00000000034600190000013d0000613d000000000701034f000000007807043c0000000006860436000000000036004b000001390000c13d000000000005004b0000011f0000613d000000000141034f0000000304500210000000000503043300000000054501cf000000000545022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000151019f00000000001304350000011f0000013d00000000032100a900000000022300d9000000000021004b000001b70000c13d0000000001000414000000000003004b000001bd0000c13d000000780010009c0000007801008041000000c001100210000080010200003901dc01d20000040f0000006003100270000000780030019d00000078033001980000018b0000c13d000000400300043d0000000100200190000001840000613d000000950030009c000001b10000213d0000002002300039000000400020043f0000000000030435000000400100043d000000200410003900000040050000390000000000540435000000960400004100000000004104350000000003030433000000400410003900000000003404350000006004100039000000000003004b000001770000613d000000000500001900000000064500190000000007250019000000000707043300000000007604350000002005500039000000000035004b000001700000413d0000001f023000390000009902200197000000000343001900000000000304350000006002200039000000780020009c00000078020080410000006002200210000000780010009c00000078010080410000004001100210000000000112019f000001dd0001042e00000093010000410000000000130435000000780030009c0000007803008041000000400130021000000094011001c7000001de000104300000001f0430003900000090044001970000003f044000390000009104400197000000400500043d0000000004450019000000000054004b00000000060000390000000106004039000000860040009c000001b10000213d0000000100600190000001b10000c13d000000400040043f0000001f0430018f000000000635043600000092053001980000000003560019000001a30000613d000000000701034f000000007807043c0000000006860436000000000036004b0000019f0000c13d000000000004004b0000015b0000613d000000000151034f0000000304400210000000000503043300000000054501cf000000000545022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000151019f00000000001304350000015b0000013d0000008e01000041000000000010043f0000004101000039000000040010043f0000008f01000041000001de000104300000008e01000041000000000010043f0000001101000039000000040010043f0000008f01000041000001de00010430000000780010009c0000007801008041000000c00110021000000085011001c7000080090200003900008001040000390000000005000019000001560000013d0000000001000414000000780010009c0000007801008041000000c00110021000000087011001c7000080100200003901dc01d70000040f0000000100200190000001d00000613d000000000101043b000000000001042d0000000001000019000001de00010430000001d5002104210000000102000039000000000001042d0000000002000019000000000001042d000001da002104230000000102000039000000000001042d0000000002000019000000000001042d000001dc00000432000001dd0001042e000001de00010430000000000000000000000000000000000000000000000000000000000000000000000000ffffffffffffffffffffffffffffffff00000000000000000000000000000000000000000000000200000000000000000000000000000040000001000000000000000000000000000000000000000000000000000000000000000000000000008da5cb5a00000000000000000000000000000000000000000000000000000000ef3b137b00000000000000000000000000000000000000000000000000000000ef3b137c00000000000000000000000000000000000000000000000000000000f3fef3a3000000000000000000000000000000000000000000000000000000008da5cb5b00000000000000000000000000000000000000000000000000000000d27fe0bd00000000000000000000000000000000000000000000000000000000038a24bc000000000000000000000000000000000000000000000000000000000d3447f800000000000000000000000000000000000000000000000000000000817b17f0000000000000000000000000ffffffffffffffffffffffffffffffffffffffff0200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000ffffffffffffffff0200000000000000000000000000000000000040000000000000000000000000ef823c8a802faf6c931739fd54286f0e0a6b4d4d4987de12f364f65e5727386482b42900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004000000800000000000000000ca484a4e83916d64d7fb5029a55544f35c7ea699c8ddd43930a00d18c3ccb1ff00000000000000000000000000000000000000200000008000000000000000007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff4e487b7100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002400000000000000000000000000000000000000000000000000000000000000000000000000000001ffffffe000000000000000000000000000000000000000000000000000000003ffffffe000000000000000000000000000000000000000000000000000000000ffffffe090b8ec18000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000000000000ffffffffffffffdf038a24bc000000000000000000000000000000000000000000000000000000004b4db85200000000000000000000000000000000000000000000000000000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe050e8ae984ea2ea59ba072f8d835db5d887c0fcab392f50e3362c600dd0928c90
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 31 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.