ETH Price: $2,479.02 (+3.53%)

Contract

0x60d46D97D3466C5ac19A998EE0c2d8A126B737dc

Overview

ETH Balance

0 ETH

ETH Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Submit Agent Res...14022952025-02-10 6:47:5016 days ago1739170070IN
0x60d46D97...126B737dc
0 ETH0.000005890.04525
Declare Winner14022892025-02-10 6:47:4416 days ago1739170064IN0 ETH0.000021140.04525
Submit Message14022792025-02-10 6:47:3416 days ago1739170054IN
0x60d46D97...126B737dc
0.0051515 ETH0.000009370.04525
Submit Message14020172025-02-10 6:43:0916 days ago1739169789IN
0x60d46D97...126B737dc
0.0051005 ETH0.000009210.04525
Submit Message14013602025-02-10 6:32:0816 days ago1739169128IN
0x60d46D97...126B737dc
0.00505 ETH0.000008860.04525
Submit Message14006582025-02-10 6:20:2316 days ago1739168423IN
0x60d46D97...126B737dc
0.005 ETH0.000009570.04525

Latest 7 internal transactions

Parent Transaction Hash Block From To
14022892025-02-10 6:47:4416 days ago1739170064
0x60d46D97...126B737dc
0.020302 ETH
14022892025-02-10 6:47:4416 days ago1739170064
0x60d46D97...126B737dc
 Contract Creation0 ETH
14022792025-02-10 6:47:3416 days ago1739170054
0x60d46D97...126B737dc
0.0051515 ETH
14020172025-02-10 6:43:0916 days ago1739169789
0x60d46D97...126B737dc
0.0051005 ETH
14013602025-02-10 6:32:0816 days ago1739169128
0x60d46D97...126B737dc
0.00505 ETH
14006582025-02-10 6:20:2316 days ago1739168423
0x60d46D97...126B737dc
0.005 ETH
13995562025-02-10 6:01:5616 days ago1739167316  Contract Creation0 ETH
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
Game

Compiler Version
v0.8.28+commit.7893614a

ZkSolc Version
v1.5.11

Optimization Enabled:
Yes with Mode 3

Other Settings:
cancun EvmVersion
File 1 of 7 : Game.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {FixedPointMathLib} from "../lib/solady/src/utils/FixedPointMathLib.sol";
import {GameToken} from "./Token.sol";
import {IUniswapV2Router02} from "../lib/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol";
import {IUniswapV2Factory} from "../lib/v2-core/contracts/interfaces/IUniswapV2Factory.sol";

contract Game {
    address public owner;
    uint256 public messagePrice;
    uint256 public prizePool;
    bool public isGameActive;
    address public winner;
    GameToken public token;

    IUniswapV2Router02 private immutable UNISWAP_ROUTER;
    IUniswapV2Factory private immutable UNISWAP_FACTORY;

    address public pair;

    struct Message {
        uint256 id;
        address sender;
        string content;
        uint256 timestamp;
    }

    struct AgentResponse {
        uint256 id;
        uint256 respondingToMessageId;
        string content;
        uint256 timestamp;
    }

    Message[] public messages;
    AgentResponse[] public agentResponses;

    mapping(uint256 => bool) public messageHasResponse;
    mapping(address => uint256) public addressToMessagesSubmitted;

    event MessageSubmitted(
        uint256 indexed messageId,
        address indexed sender,
        string message
    );

    event AgentResponseSubmitted(
        uint256 indexed responseId,
        uint256 indexed respondingToMessageId,
        string message
    );

    constructor(
        uint256 _messagePrice,
        address _uniswapRouter,
        address _uniswapFactory
    ) {
        owner = msg.sender;
        messagePrice = _messagePrice;
        isGameActive = true;
        UNISWAP_ROUTER = IUniswapV2Router02(_uniswapRouter);
        UNISWAP_FACTORY = IUniswapV2Factory(_uniswapFactory);
    }

    modifier onlyOwner() {
        require(msg.sender == owner, "Only owner");
        _;
    }

    modifier onlyGameActive() {
        require(isGameActive, "Game is over");
        _;
    }

    function submitMessage(
        string memory message
    ) external payable onlyGameActive {
        require(msg.value == messagePrice, "Incorrect fee");

        prizePool += msg.value;
        addressToMessagesSubmitted[msg.sender]++;
        uint256 messageId = messages.length;
        messages.push(Message(messageId, msg.sender, message, block.timestamp));

        messagePrice = FixedPointMathLib.mulDivUp(messagePrice, 101, 100);
        emit MessageSubmitted(messageId, msg.sender, message);
    }

    function submitAgentResponse(
        uint256 _respondingToMessageId,
        string memory _content
    ) external onlyOwner {
        require(
            _respondingToMessageId < messages.length,
            "Message ID to respond to does not exist"
        );

        require(
            !messageHasResponse[_respondingToMessageId],
            "Message already responded to"
        );

        messageHasResponse[_respondingToMessageId] = true;
        uint256 responseId = agentResponses.length;

        agentResponses.push(
            AgentResponse(
                responseId,
                _respondingToMessageId,
                _content,
                block.timestamp
            )
        );

        emit AgentResponseSubmitted(
            responseId,
            _respondingToMessageId,
            _content
        );
    }

    function declareWinner(
        address _winner,
        string memory _name,
        string memory _symbol
    ) external onlyOwner onlyGameActive {
        winner = _winner;
        isGameActive = false;

        // Deploy token
        token = new GameToken(address(this), _name, _symbol);

        // Only proceed with Uniswap if we have ETH to add
        if (prizePool > 0) {
            // Get 70% of supply for liquidity
            uint256 tokenAmount = 700_000_000 ether;

            // Create pair (or get existing)
            pair = UNISWAP_FACTORY.createPair(
                address(token),
                UNISWAP_ROUTER.WETH()
            );

            // Approve router to spend tokens
            token.approve(address(UNISWAP_ROUTER), tokenAmount);

            // Add liquidity with ETH
            UNISWAP_ROUTER.addLiquidityETH{value: prizePool}(
                address(token),
                tokenAmount,
                0,
                0,
                address(0x000000000000000000000000000000000000dEaD), // dead address
                block.timestamp
            );
        }
    }

    function determineTokenDistribution(
        address _participant
    ) external view returns (uint256) {
        uint256 baseAllocation = 0;
        // Winner & owner get 2.5% of the tokens as base allocation
        if (_participant == winner || _participant == owner) {
            baseAllocation = 25_000_000 ether;
        }

        // If the participant has not submitted any messages, return only base allocation
        if (addressToMessagesSubmitted[_participant] == 0) {
            return baseAllocation;
        }

        // Calculate message-based allocation (25% distributed amongst winners)
        uint256 tokensPerMessage = FixedPointMathLib.divWad(
            250_000_000 ether,
            messages.length
        );

        uint256 messageBasedAllocation = FixedPointMathLib.mulWad(
            tokensPerMessage,
            addressToMessagesSubmitted[_participant]
        );

        // Add base allocation to message-based allocation
        return baseAllocation + messageBasedAllocation;
    }

    function transferOwner(address _newOwner) external onlyOwner {
        owner = _newOwner;
    }

    function getMessages() external view returns (Message[] memory) {
        return messages;
    }

    function getAgentResponses()
        external
        view
        returns (AgentResponse[] memory)
    {
        return agentResponses;
    }

    function getAgentResponseById(
        uint256 _id
    ) external view returns (AgentResponse memory) {
        return agentResponses[_id];
    }

    function getMessageById(
        uint256 _id
    ) external view returns (Message memory) {
        return messages[_id];
    }

    function numMessages() external view returns (uint256) {
        return messages.length;
    }

    function getCurrentMessagePrice() external view returns (uint256) {
        return messagePrice;
    }

    function getPrizePool() external view returns (uint256) {
        return prizePool;
    }
}

File 2 of 7 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The mantissa is too big to fit.
    error MantissaOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, due to an multiplication overflow.
    error SMulWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error SDivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The input outside the acceptable domain.
    error OutOfDomain();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if gt(x, div(not(0), y)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if iszero(eq(div(z, y), x)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, WAD)
            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
            if iszero(mul(y, eq(sdiv(z, WAD), x))) {
                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    /// Note: This function is an approximation.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is less than 0.5 we return zero.
            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
            if (x <= -41446531673892822313) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // `k` is in the range `[-61, 195]`.

            // Evaluate using a (6, 7)-term rational approximation.
            // `p` is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already `2**96` too large.
                r := sdiv(p, q)
            }

            // r should be in the range `(0.09, 0.25) * 2**96`.

            // We now need to multiply r by:
            // - The scale factor `s ≈ 6.031367120`.
            // - The `2**k` factor from the range reduction.
            // - The `1e18 / 2**96` factor for base conversion.
            // We do this all at once, with an intermediate result in `2**213`
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function lnWad(int256 x) internal pure returns (int256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
            // We do this by multiplying by `2**96 / 10**18`. But since
            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
            // and add `ln(2**96 / 10**18)` at the end.

            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // We place the check here for more optimal stack operations.
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
            // forgefmt: disable-next-item
            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x := shr(159, shl(r, x))

            // Evaluate using a (8, 8)-term rational approximation.
            // `p` is made monic, we will multiply by a scale factor later.
            // forgefmt: disable-next-item
            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                sar(96, mul(add(43456485725739037958740375743393,
                sar(96, mul(add(24828157081833163892658089445524,
                sar(96, mul(add(3273285459638523848632254066296,
                    x), x))), x))), x)), 11111509109440967052023855526967)
            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.

            // `q` is monic by convention.
            let q := add(5573035233440673466300451813936, x)
            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
            q := add(909429971244387300277376558375, sar(96, mul(x, q)))

            // `p / q` is in the range `(0, 0.125) * 2**96`.

            // Finalization, we need to:
            // - Multiply by the scale factor `s = 5.549…`.
            // - Add `ln(2**96 / 10**18)`.
            // - Add `k * ln(2)`.
            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.

            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already `2**96` too large.
            p := sdiv(p, q)
            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
            p := mul(1677202110996718588342820967067443963516166, p)
            // Add `ln(2) * k * 5**18 * 2**192`.
            // forgefmt: disable-next-item
            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
            // Base conversion: mul `2**18 / 2**192`.
            r := sar(174, p)
        }
    }

    /// @dev Returns `W_0(x)`, denominated in `WAD`.
    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
    /// a.k.a. Product log function. This is an approximation of the principal branch.
    /// Note: This function is an approximation. Monotonically increasing.
    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
        // forgefmt: disable-next-item
        unchecked {
            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
            (int256 wad, int256 p) = (int256(WAD), x);
            uint256 c; // Whether we need to avoid catastrophic cancellation.
            uint256 i = 4; // Number of iterations.
            if (w <= 0x1ffffffffffff) {
                if (-0x4000000000000 <= w) {
                    i = 1; // Inputs near zero only take one step to converge.
                } else if (w <= -0x3ffffffffffffff) {
                    i = 32; // Inputs near `-1/e` take very long to converge.
                }
            } else if (uint256(w >> 63) == uint256(0)) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Inline log2 for more performance, since the range is small.
                    let v := shr(49, w)
                    let l := shl(3, lt(0xff, v))
                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                    c := gt(l, 60)
                    i := add(2, add(gt(l, 53), c))
                }
            } else {
                int256 ll = lnWad(w = lnWad(w));
                /// @solidity memory-safe-assembly
                assembly {
                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                    i := add(3, iszero(shr(68, x)))
                    c := iszero(shr(143, x))
                }
                if (c == uint256(0)) {
                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := mul(w, div(e, wad))
                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != uint256(0));
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    return w;
                }
            }
            do { // Otherwise, use Halley's for faster convergence.
                int256 e = expWad(w);
                /// @solidity memory-safe-assembly
                assembly {
                    let t := add(w, wad)
                    let s := sub(mul(w, e), mul(x, wad))
                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                }
                if (p <= w) break;
                p = w;
            } while (--i != c);
            /// @solidity memory-safe-assembly
            assembly {
                w := sub(w, sgt(w, 2))
            }
            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
            if (c == uint256(0)) return w;
            int256 t = w | 1;
            /// @solidity memory-safe-assembly
            assembly {
                x := sdiv(mul(x, wad), t)
            }
            x = (t * (wad + lnWad(x)));
            /// @solidity memory-safe-assembly
            assembly {
                w := sdiv(x, add(wad, t))
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `a * b == x * y`, with full precision.
    function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0))))
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // 512-bit multiply `[p1 p0] = x * y`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = p1 * 2**256 + p0`.

            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`.
            for {} 1 {} {
                // If overflows.
                if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.

                    /*------------------- 512 by 256 division --------------------*/

                    // Make division exact by subtracting the remainder from `[p1 p0]`.
                    let r := mulmod(x, y, d) // Compute remainder using mulmod.
                    let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                    // Make sure `z` is less than `2**256`. Also prevents `d == 0`.
                    // Placing the check here seems to give more optimal stack operations.
                    if iszero(gt(d, p1)) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    d := div(d, t) // Divide `d` by `t`, which is a power of two.
                    // Invert `d mod 2**256`
                    // Now that `d` is an odd number, it has an inverse
                    // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                    // Compute the inverse by starting with a seed that is correct
                    // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                    let inv := xor(2, mul(3, d))
                    // Now use Newton-Raphson iteration to improve the precision.
                    // Thanks to Hensel's lifting lemma, this also works in modular
                    // arithmetic, doubling the correct bits in each step.
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                    z :=
                        mul(
                            // Divide [p1 p0] by the factors of two.
                            // Shift in bits from `p1` into `p0`. For this we need
                            // to flip `t` such that it is `2**256 / t`.
                            or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                            mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                        )
                    break
                }
                z := div(z, d)
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
    /// Performs the full 512 bit calculation regardless.
    function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            let mm := mulmod(x, y, not(0))
            let p1 := sub(mm, add(z, lt(mm, z)))
            let t := and(d, sub(0, d))
            let r := mulmod(x, y, d)
            d := div(d, t)
            let inv := xor(2, mul(3, d))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            z :=
                mul(
                    or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                    mul(sub(2, mul(d, inv)), inv)
                )
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        z = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                z := add(z, 1)
                if iszero(z) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Calculates `floor(x * y / 2 ** n)` with full precision.
    /// Throws if result overflows a uint256.
    /// Credit to Philogy under MIT license:
    /// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol
    function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`.
            for {} 1 {} {
                if iszero(or(iszero(x), eq(div(z, x), y))) {
                    let k := and(n, 0xff) // `n`, cleaned.
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
                    //         |      p1     |      z     |
                    // Before: | p1_0 ¦ p1_1 | z_0  ¦ z_1 |
                    // Final:  |   0  ¦ p1_0 | p1_1 ¦ z_0 |
                    // Check that final `z` doesn't overflow by checking that p1_0 = 0.
                    if iszero(shr(k, p1)) {
                        z := add(shl(sub(256, k), p1), shr(k, z))
                        break
                    }
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
                z := shr(and(n, 0xff), z)
                break
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(z, d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(z, d))), div(z, d))
        }
    }

    /// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`.
    function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) {
        /// @solidity memory-safe-assembly
        assembly {
            let g := n
            let r := mod(a, n)
            for { let y := 1 } 1 {} {
                let q := div(g, r)
                let t := g
                g := r
                r := sub(t, mul(r, q))
                let u := x
                x := y
                y := sub(u, mul(y, q))
                if iszero(r) { break }
            }
            x := mul(eq(g, 1), add(x, mul(slt(x, 0), n)))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`. Alias for `saturatingSub`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function saturatingSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `min(2 ** 256 - 1, x + y)`.
    function saturatingAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(sub(0, lt(add(x, y), x)), add(x, y))
        }
    }

    /// @dev Returns `min(2 ** 256 - 1, x * y)`.
    function saturatingMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(sub(or(iszero(x), eq(div(mul(x, y), x), y)), 1), mul(x, y))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, address x, address y) internal pure returns (address z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if x {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`, rounded down.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`, rounded down.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // Makeshift lookup table to nudge the approximate log2 result.
            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
            // Newton-Raphson's.
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            // Round down.
            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
            z = (1 + sqrt(x)) * 10 ** 9;
            z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
        }
        /// @solidity memory-safe-assembly
        assembly {
            z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
            z = (1 + cbrt(x)) * 10 ** 12;
            z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
        }
        /// @solidity memory-safe-assembly
        assembly {
            let p := x
            for {} 1 {} {
                if iszero(shr(229, p)) {
                    if iszero(shr(199, p)) {
                        p := mul(p, 100000000000000000) // 10 ** 17.
                        break
                    }
                    p := mul(p, 100000000) // 10 ** 8.
                    break
                }
                if iszero(shr(249, p)) { p := mul(p, 100) }
                break
            }
            let t := mulmod(mul(z, z), z, p)
            z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := 1
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for {} x { x := sub(x, 1) } { z := mul(z, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
        /// @solidity memory-safe-assembly
        assembly {
            mantissa := x
            if mantissa {
                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                    exponent := 33
                }
                if iszero(mod(mantissa, 10000000000000000000)) {
                    mantissa := div(mantissa, 10000000000000000000)
                    exponent := add(exponent, 19)
                }
                if iszero(mod(mantissa, 1000000000000)) {
                    mantissa := div(mantissa, 1000000000000)
                    exponent := add(exponent, 12)
                }
                if iszero(mod(mantissa, 1000000)) {
                    mantissa := div(mantissa, 1000000)
                    exponent := add(exponent, 6)
                }
                if iszero(mod(mantissa, 10000)) {
                    mantissa := div(mantissa, 10000)
                    exponent := add(exponent, 4)
                }
                if iszero(mod(mantissa, 100)) {
                    mantissa := div(mantissa, 100)
                    exponent := add(exponent, 2)
                }
                if iszero(mod(mantissa, 10)) {
                    mantissa := div(mantissa, 10)
                    exponent := add(exponent, 1)
                }
            }
        }
    }

    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
    /// enough to fit in the desired unsigned integer type:
    /// ```
    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
    /// ```
    function packSci(uint256 x) internal pure returns (uint256 packed) {
        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
        /// @solidity memory-safe-assembly
        assembly {
            if shr(249, x) {
                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                revert(0x1c, 0x04)
            }
            packed := or(shl(7, x), packed)
        }
    }

    /// @dev Convenience function for unpacking a packed number from `packSci`.
    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
        unchecked {
            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards zero.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        unchecked {
            z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
        internal
        pure
        returns (uint256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        unchecked {
            if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
            return a - fullMulDiv(a - b, t - begin, end - begin);
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
        internal
        pure
        returns (int256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        // forgefmt: disable-next-item
        unchecked {
            if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
                uint256(t - begin), uint256(end - begin)));
            return int256(uint256(a) - fullMulDiv(uint256(a - b),
                uint256(t - begin), uint256(end - begin)));
        }
    }

    /// @dev Returns if `x` is an even number. Some people may need this.
    function isEven(uint256 x) internal pure returns (bool) {
        return x & uint256(1) == uint256(0);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}

File 3 of 7 : Token.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {FixedPointMathLib} from "../lib/solady/src/utils/FixedPointMathLib.sol";
import {ERC20} from "../lib/solady/src/tokens/ERC20.sol";
import {Game} from "./Game.sol";

contract GameToken is ERC20 {
    Game public immutable game;
    string private _name;
    string private _symbol;
    mapping(address => bool) public hasMinted;

    constructor(address _game, string memory name_, string memory symbol_) {
        game = Game(_game);
        _name = name_;
        _symbol = symbol_;

        // Mint initial supply (70%) to game contract for liquidity
        _mint(address(game), 700_000_000 ether);
    }

    function name() public view override returns (string memory) {
        return _name;
    }

    function symbol() public view override returns (string memory) {
        return _symbol;
    }

    function claimTokensFromGameParticipant(address participant) external {
        require(!hasMinted[participant], "Tokens already claimed");

        // Get this participants share of the prize pool
        uint256 amountToMint = game.determineTokenDistribution(participant);

        // Mark as minted before the mint to prevent reentrancy
        hasMinted[participant] = true;

        // Mint new tokens to the participant
        _mint(participant, amountToMint);
    }
}

File 4 of 7 : IUniswapV2Router02.sol
pragma solidity >=0.6.2;

import './IUniswapV2Router01.sol';

interface IUniswapV2Router02 is IUniswapV2Router01 {
    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountETH);
    function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountETH);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external payable;
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
}

File 5 of 7 : IUniswapV2Factory.sol
pragma solidity >=0.5.0;

interface IUniswapV2Factory {
    event PairCreated(address indexed token0, address indexed token1, address pair, uint);

    function feeTo() external view returns (address);
    function feeToSetter() external view returns (address);

    function getPair(address tokenA, address tokenB) external view returns (address pair);
    function allPairs(uint) external view returns (address pair);
    function allPairsLength() external view returns (uint);

    function createPair(address tokenA, address tokenB) external returns (address pair);

    function setFeeTo(address) external;
    function setFeeToSetter(address) external;
}

File 6 of 7 : ERC20.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Simple ERC20 + EIP-2612 implementation.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol)
///
/// @dev Note:
/// - The ERC20 standard allows minting and transferring to and from the zero address,
///   minting and transferring zero tokens, as well as self-approvals.
///   For performance, this implementation WILL NOT revert for such actions.
///   Please add any checks with overrides if desired.
/// - The `permit` function uses the ecrecover precompile (0x1).
///
/// If you are overriding:
/// - NEVER violate the ERC20 invariant:
///   the total sum of all balances must be equal to `totalSupply()`.
/// - Check that the overridden function is actually used in the function you want to
///   change the behavior of. Much of the code has been manually inlined for performance.
abstract contract ERC20 {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The total supply has overflowed.
    error TotalSupplyOverflow();

    /// @dev The allowance has overflowed.
    error AllowanceOverflow();

    /// @dev The allowance has underflowed.
    error AllowanceUnderflow();

    /// @dev Insufficient balance.
    error InsufficientBalance();

    /// @dev Insufficient allowance.
    error InsufficientAllowance();

    /// @dev The permit is invalid.
    error InvalidPermit();

    /// @dev The permit has expired.
    error PermitExpired();

    /// @dev The allowance of Permit2 is fixed at infinity.
    error Permit2AllowanceIsFixedAtInfinity();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Emitted when `amount` tokens is transferred from `from` to `to`.
    event Transfer(address indexed from, address indexed to, uint256 amount);

    /// @dev Emitted when `amount` tokens is approved by `owner` to be used by `spender`.
    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`.
    uint256 private constant _TRANSFER_EVENT_SIGNATURE =
        0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;

    /// @dev `keccak256(bytes("Approval(address,address,uint256)"))`.
    uint256 private constant _APPROVAL_EVENT_SIGNATURE =
        0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The storage slot for the total supply.
    uint256 private constant _TOTAL_SUPPLY_SLOT = 0x05345cdf77eb68f44c;

    /// @dev The balance slot of `owner` is given by:
    /// ```
    ///     mstore(0x0c, _BALANCE_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let balanceSlot := keccak256(0x0c, 0x20)
    /// ```
    uint256 private constant _BALANCE_SLOT_SEED = 0x87a211a2;

    /// @dev The allowance slot of (`owner`, `spender`) is given by:
    /// ```
    ///     mstore(0x20, spender)
    ///     mstore(0x0c, _ALLOWANCE_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let allowanceSlot := keccak256(0x0c, 0x34)
    /// ```
    uint256 private constant _ALLOWANCE_SLOT_SEED = 0x7f5e9f20;

    /// @dev The nonce slot of `owner` is given by:
    /// ```
    ///     mstore(0x0c, _NONCES_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let nonceSlot := keccak256(0x0c, 0x20)
    /// ```
    uint256 private constant _NONCES_SLOT_SEED = 0x38377508;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev `(_NONCES_SLOT_SEED << 16) | 0x1901`.
    uint256 private constant _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX = 0x383775081901;

    /// @dev `keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")`.
    bytes32 private constant _DOMAIN_TYPEHASH =
        0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f;

    /// @dev `keccak256("1")`.
    /// If you need to use a different version, override `_versionHash`.
    bytes32 private constant _DEFAULT_VERSION_HASH =
        0xc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6;

    /// @dev `keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")`.
    bytes32 private constant _PERMIT_TYPEHASH =
        0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;

    /// @dev The canonical Permit2 address.
    /// For signature-based allowance granting for single transaction ERC20 `transferFrom`.
    /// To enable, override `_givePermit2InfiniteAllowance()`.
    /// [Github](https://github.com/Uniswap/permit2)
    /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3)
    address internal constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ERC20 METADATA                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the name of the token.
    function name() public view virtual returns (string memory);

    /// @dev Returns the symbol of the token.
    function symbol() public view virtual returns (string memory);

    /// @dev Returns the decimals places of the token.
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           ERC20                            */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the amount of tokens in existence.
    function totalSupply() public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(_TOTAL_SUPPLY_SLOT)
        }
    }

    /// @dev Returns the amount of tokens owned by `owner`.
    function balanceOf(address owner) public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /// @dev Returns the amount of tokens that `spender` can spend on behalf of `owner`.
    function allowance(address owner, address spender)
        public
        view
        virtual
        returns (uint256 result)
    {
        if (_givePermit2InfiniteAllowance()) {
            if (spender == _PERMIT2) return type(uint256).max;
        }
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x34))
        }
    }

    /// @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
    ///
    /// Emits a {Approval} event.
    function approve(address spender, uint256 amount) public virtual returns (bool) {
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                // If `spender == _PERMIT2 && amount != type(uint256).max`.
                if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(amount)))) {
                    mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                    revert(0x1c, 0x04)
                }
            }
        }
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the allowance slot and store the amount.
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, caller())
            sstore(keccak256(0x0c, 0x34), amount)
            // Emit the {Approval} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, caller(), shr(96, mload(0x2c)))
        }
        return true;
    }

    /// @dev Transfer `amount` tokens from the caller to `to`.
    ///
    /// Requirements:
    /// - `from` must at least have `amount`.
    ///
    /// Emits a {Transfer} event.
    function transfer(address to, uint256 amount) public virtual returns (bool) {
        _beforeTokenTransfer(msg.sender, to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, caller())
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Compute the balance slot of `to`.
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance of `to`.
            // Will not overflow because the sum of all user balances
            // cannot exceed the maximum uint256 value.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, caller(), shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(msg.sender, to, amount);
        return true;
    }

    /// @dev Transfers `amount` tokens from `from` to `to`.
    ///
    /// Note: Does not update the allowance if it is the maximum uint256 value.
    ///
    /// Requirements:
    /// - `from` must at least have `amount`.
    /// - The caller must have at least `amount` of allowance to transfer the tokens of `from`.
    ///
    /// Emits a {Transfer} event.
    function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) {
        _beforeTokenTransfer(from, to, amount);
        // Code duplication is for zero-cost abstraction if possible.
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                let from_ := shl(96, from)
                if iszero(eq(caller(), _PERMIT2)) {
                    // Compute the allowance slot and load its value.
                    mstore(0x20, caller())
                    mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED))
                    let allowanceSlot := keccak256(0x0c, 0x34)
                    let allowance_ := sload(allowanceSlot)
                    // If the allowance is not the maximum uint256 value.
                    if not(allowance_) {
                        // Revert if the amount to be transferred exceeds the allowance.
                        if gt(amount, allowance_) {
                            mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                            revert(0x1c, 0x04)
                        }
                        // Subtract and store the updated allowance.
                        sstore(allowanceSlot, sub(allowance_, amount))
                    }
                }
                // Compute the balance slot and load its value.
                mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
                let fromBalanceSlot := keccak256(0x0c, 0x20)
                let fromBalance := sload(fromBalanceSlot)
                // Revert if insufficient balance.
                if gt(amount, fromBalance) {
                    mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated balance.
                sstore(fromBalanceSlot, sub(fromBalance, amount))
                // Compute the balance slot of `to`.
                mstore(0x00, to)
                let toBalanceSlot := keccak256(0x0c, 0x20)
                // Add and store the updated balance of `to`.
                // Will not overflow because the sum of all user balances
                // cannot exceed the maximum uint256 value.
                sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
                // Emit the {Transfer} event.
                mstore(0x20, amount)
                log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                let from_ := shl(96, from)
                // Compute the allowance slot and load its value.
                mstore(0x20, caller())
                mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED))
                let allowanceSlot := keccak256(0x0c, 0x34)
                let allowance_ := sload(allowanceSlot)
                // If the allowance is not the maximum uint256 value.
                if not(allowance_) {
                    // Revert if the amount to be transferred exceeds the allowance.
                    if gt(amount, allowance_) {
                        mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                        revert(0x1c, 0x04)
                    }
                    // Subtract and store the updated allowance.
                    sstore(allowanceSlot, sub(allowance_, amount))
                }
                // Compute the balance slot and load its value.
                mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
                let fromBalanceSlot := keccak256(0x0c, 0x20)
                let fromBalance := sload(fromBalanceSlot)
                // Revert if insufficient balance.
                if gt(amount, fromBalance) {
                    mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated balance.
                sstore(fromBalanceSlot, sub(fromBalance, amount))
                // Compute the balance slot of `to`.
                mstore(0x00, to)
                let toBalanceSlot := keccak256(0x0c, 0x20)
                // Add and store the updated balance of `to`.
                // Will not overflow because the sum of all user balances
                // cannot exceed the maximum uint256 value.
                sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
                // Emit the {Transfer} event.
                mstore(0x20, amount)
                log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
            }
        }
        _afterTokenTransfer(from, to, amount);
        return true;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          EIP-2612                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev For more performance, override to return the constant value
    /// of `keccak256(bytes(name()))` if `name()` will never change.
    function _constantNameHash() internal view virtual returns (bytes32 result) {}

    /// @dev If you need a different value, override this function.
    function _versionHash() internal view virtual returns (bytes32 result) {
        result = _DEFAULT_VERSION_HASH;
    }

    /// @dev For inheriting contracts to increment the nonce.
    function _incrementNonce(address owner) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x0c, _NONCES_SLOT_SEED)
            mstore(0x00, owner)
            let nonceSlot := keccak256(0x0c, 0x20)
            sstore(nonceSlot, add(1, sload(nonceSlot)))
        }
    }

    /// @dev Returns the current nonce for `owner`.
    /// This value is used to compute the signature for EIP-2612 permit.
    function nonces(address owner) public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the nonce slot and load its value.
            mstore(0x0c, _NONCES_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /// @dev Sets `value` as the allowance of `spender` over the tokens of `owner`,
    /// authorized by a signed approval by `owner`.
    ///
    /// Emits a {Approval} event.
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                // If `spender == _PERMIT2 && value != type(uint256).max`.
                if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(value)))) {
                    mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                    revert(0x1c, 0x04)
                }
            }
        }
        bytes32 nameHash = _constantNameHash();
        //  We simply calculate it on-the-fly to allow for cases where the `name` may change.
        if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name()));
        bytes32 versionHash = _versionHash();
        /// @solidity memory-safe-assembly
        assembly {
            // Revert if the block timestamp is greater than `deadline`.
            if gt(timestamp(), deadline) {
                mstore(0x00, 0x1a15a3cc) // `PermitExpired()`.
                revert(0x1c, 0x04)
            }
            let m := mload(0x40) // Grab the free memory pointer.
            // Clean the upper 96 bits.
            owner := shr(96, shl(96, owner))
            spender := shr(96, shl(96, spender))
            // Compute the nonce slot and load its value.
            mstore(0x0e, _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX)
            mstore(0x00, owner)
            let nonceSlot := keccak256(0x0c, 0x20)
            let nonceValue := sload(nonceSlot)
            // Prepare the domain separator.
            mstore(m, _DOMAIN_TYPEHASH)
            mstore(add(m, 0x20), nameHash)
            mstore(add(m, 0x40), versionHash)
            mstore(add(m, 0x60), chainid())
            mstore(add(m, 0x80), address())
            mstore(0x2e, keccak256(m, 0xa0))
            // Prepare the struct hash.
            mstore(m, _PERMIT_TYPEHASH)
            mstore(add(m, 0x20), owner)
            mstore(add(m, 0x40), spender)
            mstore(add(m, 0x60), value)
            mstore(add(m, 0x80), nonceValue)
            mstore(add(m, 0xa0), deadline)
            mstore(0x4e, keccak256(m, 0xc0))
            // Prepare the ecrecover calldata.
            mstore(0x00, keccak256(0x2c, 0x42))
            mstore(0x20, and(0xff, v))
            mstore(0x40, r)
            mstore(0x60, s)
            let t := staticcall(gas(), 1, 0x00, 0x80, 0x20, 0x20)
            // If the ecrecover fails, the returndatasize will be 0x00,
            // `owner` will be checked if it equals the hash at 0x00,
            // which evaluates to false (i.e. 0), and we will revert.
            // If the ecrecover succeeds, the returndatasize will be 0x20,
            // `owner` will be compared against the returned address at 0x20.
            if iszero(eq(mload(returndatasize()), owner)) {
                mstore(0x00, 0xddafbaef) // `InvalidPermit()`.
                revert(0x1c, 0x04)
            }
            // Increment and store the updated nonce.
            sstore(nonceSlot, add(nonceValue, t)) // `t` is 1 if ecrecover succeeds.
            // Compute the allowance slot and store the value.
            // The `owner` is already at slot 0x20.
            mstore(0x40, or(shl(160, _ALLOWANCE_SLOT_SEED), spender))
            sstore(keccak256(0x2c, 0x34), value)
            // Emit the {Approval} event.
            log3(add(m, 0x60), 0x20, _APPROVAL_EVENT_SIGNATURE, owner, spender)
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero pointer.
        }
    }

    /// @dev Returns the EIP-712 domain separator for the EIP-2612 permit.
    function DOMAIN_SEPARATOR() public view virtual returns (bytes32 result) {
        bytes32 nameHash = _constantNameHash();
        //  We simply calculate it on-the-fly to allow for cases where the `name` may change.
        if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name()));
        bytes32 versionHash = _versionHash();
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Grab the free memory pointer.
            mstore(m, _DOMAIN_TYPEHASH)
            mstore(add(m, 0x20), nameHash)
            mstore(add(m, 0x40), versionHash)
            mstore(add(m, 0x60), chainid())
            mstore(add(m, 0x80), address())
            result := keccak256(m, 0xa0)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  INTERNAL MINT FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Mints `amount` tokens to `to`, increasing the total supply.
    ///
    /// Emits a {Transfer} event.
    function _mint(address to, uint256 amount) internal virtual {
        _beforeTokenTransfer(address(0), to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            let totalSupplyBefore := sload(_TOTAL_SUPPLY_SLOT)
            let totalSupplyAfter := add(totalSupplyBefore, amount)
            // Revert if the total supply overflows.
            if lt(totalSupplyAfter, totalSupplyBefore) {
                mstore(0x00, 0xe5cfe957) // `TotalSupplyOverflow()`.
                revert(0x1c, 0x04)
            }
            // Store the updated total supply.
            sstore(_TOTAL_SUPPLY_SLOT, totalSupplyAfter)
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, 0, shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(address(0), to, amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  INTERNAL BURN FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Burns `amount` tokens from `from`, reducing the total supply.
    ///
    /// Emits a {Transfer} event.
    function _burn(address from, uint256 amount) internal virtual {
        _beforeTokenTransfer(from, address(0), amount);
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, from)
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Subtract and store the updated total supply.
            sstore(_TOTAL_SUPPLY_SLOT, sub(sload(_TOTAL_SUPPLY_SLOT), amount))
            // Emit the {Transfer} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, shl(96, from)), 0)
        }
        _afterTokenTransfer(from, address(0), amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                INTERNAL TRANSFER FUNCTIONS                 */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Moves `amount` of tokens from `from` to `to`.
    function _transfer(address from, address to, uint256 amount) internal virtual {
        _beforeTokenTransfer(from, to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            let from_ := shl(96, from)
            // Compute the balance slot and load its value.
            mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Compute the balance slot of `to`.
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance of `to`.
            // Will not overflow because the sum of all user balances
            // cannot exceed the maximum uint256 value.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(from, to, amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                INTERNAL ALLOWANCE FUNCTIONS                */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Updates the allowance of `owner` for `spender` based on spent `amount`.
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        if (_givePermit2InfiniteAllowance()) {
            if (spender == _PERMIT2) return; // Do nothing, as allowance is infinite.
        }
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the allowance slot and load its value.
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, owner)
            let allowanceSlot := keccak256(0x0c, 0x34)
            let allowance_ := sload(allowanceSlot)
            // If the allowance is not the maximum uint256 value.
            if not(allowance_) {
                // Revert if the amount to be transferred exceeds the allowance.
                if gt(amount, allowance_) {
                    mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated allowance.
                sstore(allowanceSlot, sub(allowance_, amount))
            }
        }
    }

    /// @dev Sets `amount` as the allowance of `spender` over the tokens of `owner`.
    ///
    /// Emits a {Approval} event.
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                // If `spender == _PERMIT2 && amount != type(uint256).max`.
                if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(amount)))) {
                    mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                    revert(0x1c, 0x04)
                }
            }
        }
        /// @solidity memory-safe-assembly
        assembly {
            let owner_ := shl(96, owner)
            // Compute the allowance slot and store the amount.
            mstore(0x20, spender)
            mstore(0x0c, or(owner_, _ALLOWANCE_SLOT_SEED))
            sstore(keccak256(0x0c, 0x34), amount)
            // Emit the {Approval} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, shr(96, owner_), shr(96, mload(0x2c)))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     HOOKS TO OVERRIDE                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Hook that is called before any transfer of tokens.
    /// This includes minting and burning.
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /// @dev Hook that is called after any transfer of tokens.
    /// This includes minting and burning.
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          PERMIT2                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns whether to fix the Permit2 contract's allowance at infinity.
    ///
    /// This value should be kept constant after contract initialization,
    /// or else the actual allowance values may not match with the {Approval} events.
    /// For best performance, return a compile-time constant for zero-cost abstraction.
    function _givePermit2InfiniteAllowance() internal view virtual returns (bool) {
        return true;
    }
}

File 7 of 7 : IUniswapV2Router01.sol
pragma solidity >=0.6.2;

interface IUniswapV2Router01 {
    function factory() external pure returns (address);
    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint amountADesired,
        uint amountBDesired,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB, uint liquidity);
    function addLiquidityETH(
        address token,
        uint amountTokenDesired,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
    function removeLiquidity(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETH(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountToken, uint amountETH);
    function removeLiquidityWithPermit(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETHWithPermit(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountToken, uint amountETH);
    function swapExactTokensForTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapTokensForExactTokens(
        uint amountOut,
        uint amountInMax,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);
    function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);

    function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
    function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
    function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
    function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
    function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}

Settings
{
  "viaIR": false,
  "codegen": "yul",
  "remappings": [
    "solady/=lib/solady/src/",
    "uniswap/v2-periphery/=lib/v2-periphery/",
    "forge-std/=lib/forge-std/src/",
    "v2-core/=lib/v2-core/contracts/",
    "v2-periphery/=lib/v2-periphery/contracts/"
  ],
  "evmVersion": "cancun",
  "outputSelection": {
    "*": {
      "*": [
        "abi"
      ]
    }
  },
  "optimizer": {
    "enabled": true,
    "mode": "3",
    "fallback_to_optimizing_for_size": false,
    "disable_system_request_memoization": true
  },
  "metadata": {},
  "libraries": {},
  "enableEraVMExtensions": false,
  "forceEVMLA": false
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"uint256","name":"_messagePrice","type":"uint256"},{"internalType":"address","name":"_uniswapRouter","type":"address"},{"internalType":"address","name":"_uniswapFactory","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"responseId","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"respondingToMessageId","type":"uint256"},{"indexed":false,"internalType":"string","name":"message","type":"string"}],"name":"AgentResponseSubmitted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"messageId","type":"uint256"},{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"string","name":"message","type":"string"}],"name":"MessageSubmitted","type":"event"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"addressToMessagesSubmitted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"agentResponses","outputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"respondingToMessageId","type":"uint256"},{"internalType":"string","name":"content","type":"string"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_winner","type":"address"},{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"}],"name":"declareWinner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_participant","type":"address"}],"name":"determineTokenDistribution","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_id","type":"uint256"}],"name":"getAgentResponseById","outputs":[{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"respondingToMessageId","type":"uint256"},{"internalType":"string","name":"content","type":"string"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"internalType":"struct Game.AgentResponse","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAgentResponses","outputs":[{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"respondingToMessageId","type":"uint256"},{"internalType":"string","name":"content","type":"string"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"internalType":"struct Game.AgentResponse[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentMessagePrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_id","type":"uint256"}],"name":"getMessageById","outputs":[{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"string","name":"content","type":"string"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"internalType":"struct Game.Message","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMessages","outputs":[{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"string","name":"content","type":"string"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"internalType":"struct Game.Message[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPrizePool","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isGameActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"messageHasResponse","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"messagePrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"messages","outputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"string","name":"content","type":"string"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"numMessages","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"prizePool","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_respondingToMessageId","type":"uint256"},{"internalType":"string","name":"_content","type":"string"}],"name":"submitAgentResponse","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"message","type":"string"}],"name":"submitMessage","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract GameToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_newOwner","type":"address"}],"name":"transferOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"winner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

9c4d535b00000000000000000000000000000000000000000000000000000000000000000100034b8c0e2d599fcb0d0fcdf8754f638b0d097a2b120f14eb049484bdc5a3000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000600000000000000000000000000000000000000000000000000011c37937e08000000000000000000000000000ad1eca41e6f772be3cb5a48a6141f9bcc1af9f7c000000000000000000000000566d7510dee58360a64c9827257cf6d0dc43985e

Deployed Bytecode

0x0002000000000002000900000000000200010000000103550000006003100270000002e90030019d000002e90330019700000001002001900000002d0000c13d0000008002000039000000400020043f000000040030008c000009610000413d000000000201043b000000e002200270000002ef0020009c0000006c0000a13d000002f00020009c0000015a0000213d000002f80020009c0000018e0000213d000002fc0020009c000002220000613d000002fd0020009c000002420000613d000002fe0020009c000009610000c13d000000240030008c000009610000413d0000000002000416000000000002004b000009610000c13d0000000401100370000000000101043b000900000001001d000002ec0010009c000009610000213d0000000301000039000000000101041a0000000801100270000002ec011001970000000902000029000000000012004b0000039b0000c13d0000032201000041000003a00000013d0000000002000416000000000002004b000009610000c13d0000001f02300039000002ea02200197000000c002200039000000400020043f0000001f0430018f000002eb05300198000000c0025000390000003e0000613d000000c006000039000000000701034f000000007807043c0000000006860436000000000026004b0000003a0000c13d000000000004004b0000004b0000613d000000000151034f0000000304400210000000000502043300000000054501cf000000000545022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000151019f0000000000120435000000600030008c000009610000413d000000e00100043d000002ec0010009c000009610000213d000001000200043d000002ec0020009c000009610000213d000000c00300043d000000000400041a000002ed044001970000000005000411000000000454019f000000000040041b0000000104000039000000000034041b0000000303000039000000000403041a000003450440019700000001044001bf000000000043041b000000800010043f000000a00020043f0000014000000443000001600010044300000020010000390000018000100443000001a000200443000001000010044300000002010000390000012000100443000002ee0100004100000b9d0001042e000002ff0020009c0000016f0000a13d000003000020009c000001a40000213d000003040020009c000003770000613d000003050020009c000002270000613d000003060020009c000009610000c13d000000440030008c000009610000413d0000000002000416000000000002004b000009610000c13d0000000402100370000000000202043b000900000002001d0000002402100370000000000402043b0000030e0040009c000009610000213d0000002302400039000000000032004b000009610000813d0000000405400039000000000251034f000000000202043b0000033a0020009c000003950000813d0000001f0620003900000346066001970000003f0660003900000346066001970000030f0060009c000003950000213d0000008006600039000000400060043f000000800020043f00000000042400190000002404400039000000000034004b000009610000213d0000002003500039000000000331034f00000346042001980000001f0520018f000000a001400039000000a30000613d000000a006000039000000000703034f000000007807043c0000000006860436000000000016004b0000009f0000c13d000000000005004b000000b00000613d000000000343034f0000000304500210000000000501043300000000054501cf000000000545022f000000000303043b0000010004400089000000000343022f00000000034301cf000000000353019f0000000000310435000000a0012000390000000000010435000000000100041a000002ec011001970000000002000411000000000012004b000005610000c13d0000000601000039000000000101041a0000000902000029000000000012004b0000058e0000813d000000000020043f0000000801000039000000200010043f0000000001000414000002e90010009c000002e901008041000000c00110021000000323011001c700008010020000390b9c0b970000040f0000000100200190000009610000613d000000000101043b000000000101041a000000ff00100190000005a90000c13d0000000901000029000000000010043f0000000801000039000000200010043f0000000001000414000002e90010009c000002e901008041000000c00110021000000323011001c700008010020000390b9c0b970000040f0000000100200190000009610000613d000000000101043b000000000201041a000003450220019700000001022001bf000000000021041b000000400100043d000800000001001d0000030f0010009c000003950000213d0000000701000039000000000201041a00000008030000290000008001300039000000400010043f00000040043000390000008001000039000600000004001d0000000000140435000700000002001d00000000022304360000000901000029000500000002001d00000000001204350000031e0100004100000000001004430000000001000414000002e90010009c000002e901008041000000c0011002100000031f011001c70000800b020000390b9c0b970000040f0000000100200190000007da0000613d000000000101043b00000008020000290000006002200039000400000002001d000000000012043500000007010000290000030e0010009c000003950000213d000000070200002900000001012000390000000703000039000000000013041b000000000030043f000000080100002900000000010104330000000203200210000003400230009a000000000012041b00000005010000290000000001010433000800000003001d000003410230009a000000000012041b00000006010000290000000001010433000300000001001d0000000021010434000500000002001d000600000001001d0000030e0010009c000003950000213d0000000801000029000003420110009a000200000001001d000000000101041a000000010210019000000001011002700000007f0110618f000100000001001d0000001f0010008c00000000010000390000000101002039000000000012004b000006090000c13d0000000101000029000000200010008c000001460000413d0000000201000029000000000010043f0000000001000414000002e90010009c000002e901008041000000c0011002100000032c011001c700008010020000390b9c0b970000040f0000000100200190000009610000613d00000006030000290000001f023000390000000502200270000000200030008c0000000002004019000000000301043b00000001010000290000001f01100039000000050110027000000000011300190000000002230019000000000012004b000001460000813d000000000002041b0000000102200039000000000012004b000001420000413d00000006010000290000001f0010008c000008090000a13d0000000201000029000000000010043f0000000001000414000002e90010009c000002e901008041000000c0011002100000032c011001c700008010020000390b9c0b970000040f0000000100200190000009610000613d000000200200008a0000000602200180000000000101043b000008af0000c13d0000002003000039000008bc0000013d000002f10020009c000001990000213d000002f50020009c0000033b0000613d000002f60020009c000002670000613d000002f70020009c000009610000c13d000000240030008c000009610000413d0000000002000416000000000002004b000009610000c13d0000000401100370000000000101043b000000000010043f0000000801000039000000200010043f00000040010000390b9c0b810000040f000003340000013d000003070020009c000001eb0000a13d000003080020009c0000023d0000613d000003090020009c0000022c0000613d0000030a0020009c000009610000c13d000000240030008c000009610000413d0000000002000416000000000002004b000009610000c13d0000000401100370000000000101043b000900000001001d000002ec0010009c000009610000213d000000000100041a000002ec011001970000000002000411000000000012004b000000000100003900000001010060390b9c0b070000040f000000000100041a000002ed0110019700000009011001af000000000010041b000000000100001900000b9d0001042e000002f90020009c000002220000613d000002fa0020009c0000026d0000613d000002fb0020009c000009610000c13d0000000001000416000000000001004b000009610000c13d000000000100041a000003730000013d000002f20020009c0000036d0000613d000002f30020009c000003160000613d000002f40020009c000009610000c13d0000000001000416000000000001004b000009610000c13d00000004010000390000026b0000013d000003010020009c000003890000613d000003020020009c000002270000613d000003030020009c000009610000c13d000000240030008c000009610000413d0000000402100370000000000402043b0000030e0040009c000009610000213d0000002302400039000000000032004b000009610000813d0000000405400039000000000251034f000000000202043b0000030e0020009c000003950000213d0000001f0620003900000346066001970000003f0660003900000346066001970000030f0060009c000003950000213d0000008006600039000000400060043f000000800020043f00000000042400190000002404400039000000000034004b000009610000213d0000002003500039000000000331034f00000346042001980000001f0520018f000000a001400039000001d10000613d000000a006000039000000000703034f000000007807043c0000000006860436000000000016004b000001cd0000c13d000000000005004b000001de0000613d000000000343034f0000000304500210000000000501043300000000054501cf000000000545022f000000000303043b0000010004400089000000000343022f00000000034301cf000000000353019f0000000000310435000000a00120003900000000000104350000000301000039000000000101041a000000ff00100190000005680000c13d000000400100043d00000044021000390000033803000041000000000032043500000024021000390000000c03000039000005af0000013d0000030b0020009c000003300000613d0000030c0020009c000009610000c13d000000240030008c000009610000413d0000000002000416000000000002004b000009610000c13d0000000401100370000000000101043b0000000602000039000000000202041a000000000021004b000009610000813d0b9c096f0000040f0000000002010019000900000001001d0000000101100039000000000101041a000700000001001d000000000102041a000800000001001d00000002012000390b9c098b0000040f00000009020000290000000302200039000000000202041a000900000002001d000000400400043d000600000004001d0000004002400039000000800300003900000000003204350000000702000029000002ec02200197000000200340003900000000002304350000000802000029000000000024043500000080024000390b9c09d80000040f00000006040000290000006002400039000000090300002900000000003204350000000001410049000002e90010009c000002e901008041000002e90040009c000002e90400804100000060011002100000004002400210000000000121019f00000b9d0001042e0000000001000416000000000001004b000009610000c13d0000000201000039000003850000013d0000000001000416000000000001004b000009610000c13d0000000101000039000003850000013d000000240030008c000009610000413d0000000001000416000000000001004b000009610000c13d0b9c0a8d0000040f00000004010000390000000101100367000000000101043b0b9c096f0000040f0b9c0aa10000040f0000002002000039000000400300043d000900000003001d00000000022304360b9c0a0a0000040f000003260000013d0000000001000416000000000001004b000009610000c13d0000000601000039000003850000013d0000000001000416000000000001004b000009610000c13d0000000701000039000000000501041a0000030e0050009c000003950000213d00000005025002100000003f022000390000032a022001970000030f0020009c000003950000213d0000008007200039000000400070043f000000800050043f000000000010043f000000000005004b000003d20000c13d00000020010000390000000002170436000000800100043d0000000000120435000000400470003900000005031002100000000003430019000800000001001d000000000001004b000004a50000c13d0000000001730049000002e90010009c000002e9010080410000006001100210000002e90070009c000002e9070080410000004002700210000000000121019f00000b9d0001042e0000000001000416000000000001004b000009610000c13d0000000501000039000000000101041a000003730000013d000000640030008c000009610000413d0000000002000416000000000002004b000009610000c13d0000000402100370000000000602043b000002ec0060009c000009610000213d0000002402100370000000000502043b0000030e0050009c000009610000213d0000002302500039000000000032004b000009610000813d0000000407500039000000000271034f000000000402043b0000030e0040009c000003950000213d0000001f0840003900000346088001970000003f0880003900000346088001970000030f0080009c000003950000213d0000008008800039000000400080043f000000800040043f00000000054500190000002405500039000000000035004b000009610000213d0000002005700039000000000751034f00000346084001980000001f0940018f000000a0058000390000029b0000613d000000a00a000039000000000b07034f00000000bc0b043c000000000aca043600000000005a004b000002970000c13d000000000009004b000002a80000613d000000000787034f0000000308900210000000000905043300000000098901cf000000000989022f000000000707043b0000010008800089000000000787022f00000000078701cf000000000797019f0000000000750435000000a00440003900000000000404350000004404100370000000000804043b0000030e0080009c000009610000213d0000002304800039000000000034004b000009610000813d0000000409800039000000000491034f000000000704043b0000030e0070009c000003950000213d0000001f0470003900000346044001970000003f044000390000034604400197000000400500043d0000000004450019000000000054004b000000000a000039000000010a0040390000030e0040009c000003950000213d0000000100a00190000003950000c13d000000400040043f000000000475043600000000087800190000002408800039000000000038004b000009610000213d0000002003900039000000000331034f00000346087001980000001f0970018f0000000001840019000002d50000613d000000000a03034f000000000b04001900000000ac0a043c000000000bcb043600000000001b004b000002d10000c13d000000000009004b000002e20000613d000000000383034f0000000308900210000000000901043300000000098901cf000000000989022f000000000303043b0000010008800089000000000383022f00000000038301cf000000000393019f000000000031043500000000017400190000000000010435000000000100041a000002ec011001970000000003000411000000000013004b000005610000c13d0000000301000039000000000301041a000000ff00300190000001e40000613d000003100330019700000008066002100000031106600197000000000363019f000000000031041b000000400100043d000003120010009c000003950000213d000000a406100039000000600300003900000000003604350000002406100039000002e8070000410000000000760435000000840610003900000000070004100000000000760435000000e408100039000000800700043d0000000000780435000003460a7001970000001f0970018f0000010408100039000000a10080008c0000060f0000413d00000000000a004b000003110000613d000000000c980019000000800b9001bf000000200cc0008a000000000dac0019000000000eab0019000000000e0e04330000000000ed0435000000200aa0008c0000030b0000c13d000000000009004b000006250000613d000000a00a000039000000000b0800190000061b0000013d000000240030008c000009610000413d0000000001000416000000000001004b000009610000c13d0b9c0a8d0000040f00000004010000390000000101100367000000000101043b0b9c097d0000040f0b9c0b1b0000040f0000002002000039000000400300043d000900000003001d00000000022304360b9c0a4c0000040f00000009020000290000000001210049000002e90010009c000002e9010080410000006001100210000002e90020009c000002e9020080410000004002200210000000000121019f00000b9d0001042e0000000001000416000000000001004b000009610000c13d0000000301000039000000000101041a000000ff001001900000000001000039000000010100c039000000800010043f0000030d0100004100000b9d0001042e000000240030008c000009610000413d0000000002000416000000000002004b000009610000c13d0000000401100370000000000101043b0000000702000039000000000202041a000000000021004b000009610000813d0b9c097d0000040f0000000002010019000900000001001d0000000101100039000000000101041a000800000001001d000000000102041a000700000001001d00000002012000390b9c098b0000040f00000009020000290000000302200039000000000202041a000900000002001d000000400400043d000600000004001d0000004002400039000000800300003900000000003204350000002002400039000000080300002900000000003204350000000702000029000000000024043500000080024000390b9c09d80000040f00000006030000290000006002300039000000090400002900000000004204350000000001310049000002e90010009c000002e901008041000002e90030009c000002e90300804100000060011002100000004002300210000000000121019f00000b9d0001042e0000000001000416000000000001004b000009610000c13d0000000301000039000000000101041a0000000801100270000002ec01100197000000800010043f0000030d0100004100000b9d0001042e000000240030008c000009610000413d0000000002000416000000000002004b000009610000c13d0000000401100370000000000101043b000002ec0010009c000009610000213d000000000010043f0000000901000039000000200010043f00000040010000390b9c0b810000040f000000000101041a000000800010043f0000030d0100004100000b9d0001042e0000000001000416000000000001004b000009610000c13d0000000601000039000000000501041a0000030e0050009c000003950000213d00000005025002100000003f022000390000032a022001970000030f0020009c000003b90000a13d0000033601000041000000000010043f0000004101000039000000040010043f000003370100004100000b9e00010430000000000100041a000002ec01100197000000000012004b00000000010000190000032201006041000800000001001d000000000020043f0000000901000039000000200010043f0000000001000414000002e90010009c000002e901008041000000c00110021000000323011001c700008010020000390b9c0b970000040f0000000100200190000009610000613d000000000101043b000000000101041a000000000001004b000004370000c13d0000000802000029000000400100043d0000000000210435000002e90010009c000002e901008041000000400110021000000329011001c700000b9d0001042e000000800e2000390000004000e0043f000000800050043f000000000010043f000000000005004b0000043f0000c13d000000200100003900000000021e0436000000800100043d00000000001204350000004002e0003900000005031002100000000003230019000900000001001d000000000001004b000004f50000c13d0000000001e30049000002e90010009c000002e9010080410000006001100210000002e900e0009c000002e90e0080410000004002e00210000000000121019f00000b9d0001042e000000a0060000390000032b08000041000000200900008a000000000a000019000200000005001d0000030f0070009c000003950000213d0000008001700039000000400010043f000000000108041a000000000117043600000001028001bf000000000202041a000000000021043500000002018001bf000000000201041a0000000103200190000000010c2002700000007f0cc0618f0000001f00c0008c00000000040000390000000104002039000000000442013f0000000100400190000006090000c13d000000400b00043d0000000004cb0436000000000003004b000004150000613d000300000004001d00040000000c001d00050000000b001d00060000000a001d000700000008001d000800000006001d000900000007001d000000000010043f0000000001000414000002e90010009c000002e901008041000000c0011002100000032c011001c700008010020000390b9c0b970000040f0000000100200190000009610000613d000000040c00002900000000000c004b00000002050000290000000806000029000000200900008a000000060a0000290000041b0000613d000000000201043b000000000100001900000009070000290000000708000029000000050b000029000000030d00002900000000031d0019000000000402041a0000000000430435000000010220003900000020011000390000000000c1004b0000040d0000413d0000041f0000013d0000034501200197000000000014043500000000000c004b000000200100003900000000010060390000041f0000013d000000000100001900000009070000290000000708000029000000050b0000290000003f01100039000000000291016f0000000001b20019000000000021004b000000000200003900000001020040390000030e0010009c000003950000213d0000000100200190000003950000c13d000000400010043f00000040017000390000000000b1043500000003018001bf000000000101041a0000006002700039000000000012043500000000067604360000000408800039000000400700043d000000010aa0003900000000005a004b000003d70000413d000002540000013d0000000601000039000000000101041a000000000001004b000005460000c13d0000032801000041000000000010043f000003260100004100000b9e00010430000000a0060000390000033907000041000000200800008a0000000009000019000200000005001d0000030f00e0009c000003950000213d0000008001e00039000000400010043f000000000107041a00000000011e04360000000102700039000000000202041a000002ec0220019700000000002104350000000201700039000000000201041a0000000103200190000000010b2002700000007f0bb0618f0000001f00b0008c00000000040000390000000104002039000000000442013f0000000100400190000006090000c13d000000400a00043d0000000004ba0436000000000003004b000004830000613d000300000004001d00040000000b001d00050000000a001d000600000009001d000700000007001d000800000006001d00090000000e001d000000000010043f0000000001000414000002e90010009c000002e901008041000000c0011002100000032c011001c700008010020000390b9c0b970000040f0000000100200190000009610000613d000000040b00002900000000000b004b00000002050000290000000806000029000000200800008a0000000609000029000004890000613d000000000201043b0000000001000019000000090e0000290000000707000029000000050a000029000000030c00002900000000031c0019000000000402041a0000000000430435000000010220003900000020011000390000000000b1004b0000047b0000413d0000048d0000013d0000034501200197000000000014043500000000000b004b000000200100003900000000010060390000048d0000013d0000000001000019000000090e0000290000000707000029000000050a0000290000003f01100039000000000281016f0000000001a20019000000000021004b000000000200003900000001020040390000030e0010009c000003950000213d0000000100200190000003950000c13d000000400010043f0000004001e000390000000000a104350000000301700039000000000101041a0000006002e0003900000000001204350000000006e604360000000407700039000000400e00043d0000000109900039000000000059004b000004440000413d000003bf0000013d000000a005000039000000200b00008a0000000006000019000900000007001d000004c20000013d0000000301b00210000000000b0d0433000000000b1b01cf000000000b1b022f000000000a0a04330000010001100089000000000a1a022f00000000011a01cf0000000001b1019f00000000001d04350000000001980019000000000001043500000060013000390000006003700039000000000303043300000000003104350000001f01800039000000000b020019000000000121016f00000000039100190000000106600039000000080060006c00000009070000290000025e0000813d0000000007730049000000400770008a00000000047404360000000057050434000000009807043400000000088304360000000009090433000000000098043500000040087000390000000008080433000000400930003900000080010000390000000000190435000000800930003900000000a8080434000000000089043500000000020b0019000000000cb8016f0000001f0b80018f000000a00930003900000000009a004b000004e80000813d00000000000c004b000004e40000613d000000000eba0019000000000db90019000000200dd0008a000000200ee0008a000000000fcd00190000000001ce0019000000000101043300000000001f0435000000200cc0008c000004de0000c13d00000000000b004b000004b40000613d000000000d090019000004aa0000013d000000000dc9001900000000000c004b000004f10000613d000000000e0a0019000000000f09001900000000e10e0434000000000f1f04360000000000df004b000004ed0000c13d00000000000b004b000004b40000613d000000000aca0019000004aa0000013d000000a004000039000000200b00008a0000000006000019000005110000013d000000000aca00190000000301b00210000000000b0d0433000000000b1b01cf000000000b1b022f000000000a0a04330000010001100089000000000a1a022f00000000011a01cf0000000001b1019f00000000001d04350000000001980019000000000001043500000060013000390000006003700039000000000303043300000000003104350000001f01800039000000200b00008a0000000001b1016f00000000039100190000000106600039000000090060006c000003c90000813d00000000050e00190000000007e30049000000400770008a00000000027204360000000047040434000000009807043400000000088304360000000009090433000002ec09900197000000000098043500000040087000390000000008080433000000400930003900000080010000390000000000190435000000800930003900000000a80804340000000000890435000000000cb8016f0000001f0b80018f000000a00930003900000000009a004b000005390000813d00000000000c004b000005340000613d000000000eba0019000000000db90019000000200dd0008a000000200ee0008a000000000fcd00190000000001ce0019000000000101043300000000001f0435000000200cc0008c0000052e0000c13d00000000000b004b000000000e050019000005040000613d000000000d090019000004fa0000013d000000000dc9001900000000000c004b000005420000613d000000000e0a0019000000000f09001900000000e10e0434000000000f1f04360000000000df004b0000053e0000c13d00000000000b004b000000000e050019000004f90000c13d000005040000013d000700000001001d0000000901000029000000000010043f0000000901000039000000200010043f0000000001000414000002e90010009c000002e901008041000000c00110021000000323011001c700008010020000390b9c0b970000040f0000000100200190000009610000613d00000007020000290000032402200129000000000101043b000000000101041a000000000001004b0000058a0000613d0000034703100129000000000032004b0000058a0000a13d0000032501000041000000000010043f000003260100004100000b9e00010430000000400100043d00000044021000390000033b03000041000000000032043500000024021000390000000a03000039000005af0000013d0000000101000039000000000201041a0000000001000416000000000021004b000005a20000c13d0000000202000039000000000302041a000000000013001a000005840000413d0000000001130019000000000012041b0000000001000411000000000010043f0000000901000039000000200010043f0000000001000414000002e90010009c000002e901008041000000c00110021000000323011001c700008010020000390b9c0b970000040f0000000100200190000009610000613d000000000101043b000000000201041a000000010220003a000005ba0000c13d0000033601000041000000000010043f0000001101000039000000040010043f000003370100004100000b9e0001043000000000012100a9000003270110012a0000000802100029000003b20000013d000000400100043d00000064021000390000033c03000041000000000032043500000044021000390000033d0300004100000000003204350000002402100039000000270300003900000000003204350000032e020000410000000000210435000000040210003900000020030000390000000000320435000002e90010009c000002e90100804100000040011002100000033e011001c700000b9e00010430000000400100043d00000044021000390000032d03000041000000000032043500000024021000390000000d03000039000005af0000013d000000400100043d00000044021000390000033f03000041000000000032043500000024021000390000001c0300003900000000003204350000032e020000410000000000210435000000040210003900000020030000390000000000320435000002e90010009c000002e90100804100000040011002100000032f011001c700000b9e00010430000000000021041b000000400100043d000900000001001d0000030f0010009c000003950000213d0000000601000039000000000201041a00000009040000290000008001400039000000400010043f00000040034000390000008001000039000700000003001d0000000000130435000800000002001d00000000022404360000000001000411000600000002001d00000000001204350000031e0100004100000000001004430000000001000414000002e90010009c000002e901008041000000c0011002100000031f011001c70000800b020000390b9c0b970000040f0000000100200190000007da0000613d000000000101043b00000009020000290000006002200039000500000002001d000000000012043500000008010000290000030e0010009c000003950000213d000000080200002900000001012000390000000603000039000000000013041b000000000030043f000000090100002900000000010104330000000203200210000003300230009a000000000012041b00000006010000290000000001010433000002ec01100197000900000003001d000003310230009a000000000302041a000002ed03300197000000000113019f000000000012041b00000007010000290000000001010433000400000001001d0000000021010434000600000002001d000700000001001d0000030e0010009c000003950000213d0000000901000029000003320110009a000300000001001d000000000101041a000000010010019000000001021002700000007f0220618f000200000002001d0000001f0020008c00000000020000390000000102002039000000000121013f0000000100100190000006430000613d0000033601000041000000000010043f0000002201000039000000040010043f000003370100004100000b9e00010430000000000ba8001900000000000a004b000006180000613d000000a00c000039000000000d08001900000000ce0c0434000000000ded04360000000000bd004b000006140000c13d000000000009004b000006250000613d000000a00aa000390000000309900210000000000c0b0433000000000c9c01cf000000000c9c022f000000000a0a04330000010009900089000000000a9a022f00000000099a01cf0000000009c9019f00000000009b0435000000000987001900000000000904350000001f07700039000003460770019700000000078700190000000006670049000000c40810003900000000006804350000000006050433000000000567043600000346086001970000001f0760018f000000000054004b000006760000813d000000000008004b0000063f0000613d000000000a7400190000000009750019000000200990008a000000200aa0008a000000000b890019000000000c8a0019000000000c0c04330000000000cb0435000000200880008c000006390000c13d000000000007004b0000068c0000613d0000000009050019000006820000013d0000000201000029000000200010008c000006620000413d0000000301000029000000000010043f0000000001000414000002e90010009c000002e901008041000000c0011002100000032c011001c700008010020000390b9c0b970000040f0000000100200190000009610000613d00000007030000290000001f023000390000000502200270000000200030008c0000000002004019000000000301043b00000002010000290000001f01100039000000050110027000000000011300190000000002230019000000000012004b000006620000813d000000000002041b0000000102200039000000000012004b0000065e0000413d00000007010000290000001f0010008c000007fc0000a13d0000000301000029000000000010043f0000000001000414000002e90010009c000002e901008041000000c0011002100000032c011001c700008010020000390b9c0b970000040f0000000100200190000009610000613d000000200200008a0000000702200180000000000101043b000008160000c13d0000002003000039000008230000013d0000000009850019000000000008004b0000067f0000613d000000000a040019000000000b05001900000000ac0a0434000000000bcb043600000000009b004b0000067b0000c13d000000000007004b0000068c0000613d00000000048400190000000307700210000000000809043300000000087801cf000000000878022f00000000040404330000010007700089000000000474022f00000000047401cf000000000484019f0000000000490435000000000456001900000000000404350000004404100039000000000700041400000000003404350000001f03600039000003460230019700000000031500490000000002320019000000840320008a000000640410003900000000003404350000031303000041000000000031043500000004031000390000000000030435000002e90020009c000002e9020080410000006002200210000002e90010009c000002e9010080410000004001100210000000000112019f000002e90070009c000002e907008041000000c002700210000000000112019f00000314011001c700008006020000390b9c0b920000040f0000000100200190000007db0000613d00000000020000310000000103200367000000000101043b000000000001004b0000000002000019000007de0000613d000902ec0010019b0000000402000039000000000102041a000002ed0110019700000009011001af000000000012041b0000000201000039000000000101041a000000000001004b0000091b0000613d000003150100004100000000001004430000000001000412000000040010044300000024000004430000000001000414000002e90010009c000002e901008041000000c00110021000000316011001c700008005020000390b9c0b970000040f0000000100200190000007da0000613d000000000201043b000000400300043d000800000003001d00000317010000410000000000130435000002e90030009c000002e901000041000000000103401900000040011002100000000003000414000002e90030009c000002e903008041000000c003300210000000000113019f00000318011001c7000002ec02200197000700000002001d0b9c0b970000040f0000006003100270000002e903300197000000200030008c000000200400003900000000040340190000001f0640018f0000002007400190000000080b0000290000000805700029000006ec0000613d000000000801034f00000000090b0019000000008a08043c0000000009a90436000000000059004b000006e80000c13d000000000006004b000006f90000613d000000000771034f0000000306600210000000000805043300000000086801cf000000000868022f000000000707043b0000010006600089000000000767022f00000000066701cf000000000686019f00000000006504350000000100200190000008910000613d0000001f01400039000000600110018f0000000002b10019000000000012004b00000000010000390000000101004039000600000002001d0000030e0020009c000003950000213d0000000100100190000003950000c13d0000000601000029000000400010043f000000200030008c000009610000413d00000000010b0433000002ec0010009c000009610000213d000000060300002900000024023000390000000000120435000003190100004100000000001304350000000401300039000000090200002900000000002104350000031501000041000000000010044300000000010004120000000400100443000000200100003900000024001004430000000001000414000002e90010009c000002e901008041000000c00110021000000316011001c700008005020000390b9c0b970000040f0000000100200190000007da0000613d000000000201043b0000000601000029000002e90010009c000002e90100804100000040011002100000000003000414000002e90030009c000002e903008041000000c003300210000000000113019f0000031a011001c7000002ec022001970b9c0b920000040f0000006003100270000002e903300197000000200030008c000000200400003900000000040340190000001f0640018f00000020074001900000000605700029000007400000613d000000000801034f0000000609000029000000008a08043c0000000009a90436000000000059004b0000073c0000c13d000000000006004b0000074d0000613d000000000771034f0000000306600210000000000805043300000000086801cf000000000868022f000000000707043b0000010006600089000000000767022f00000000066701cf000000000686019f000000000065043500000001002001900000091d0000613d0000001f01400039000000600110018f0000000601100029000900000001001d0000030e0010009c000003950000213d0000000901000029000000400010043f000000200030008c000009610000413d00000006010000290000000001010433000002ec0010009c000009610000213d0000000502000039000000000302041a000002ed03300197000000000113019f000000000012041b0000000401000039000000000201041a000000090400002900000024014000390000031b0300004100000000003104350000031c010000410000000000140435000000040140003900000007030000290000000000310435000002e90040009c000002e901000041000000000104401900000040011002100000000003000414000002e90030009c000002e903008041000000c003300210000000000113019f0000031a011001c7000002ec022001970b9c0b920000040f0000006003100270000002e903300197000000200030008c000000200400003900000000040340190000001f0640018f00000020074001900000000905700029000007880000613d000000000801034f0000000909000029000000008a08043c0000000009a90436000000000059004b000007840000c13d000000000006004b000007950000613d000000000771034f0000000306600210000000000805043300000000086801cf000000000868022f000000000707043b0000010006600089000000000767022f00000000066701cf000000000686019f00000000006504350000000100200190000009290000613d0000001f01400039000000600110018f0000000901100029000800000001001d0000030e0010009c000003950000213d0000000801000029000000400010043f000000200030008c000009610000413d00000009010000290000000001010433000000000001004b0000000002000039000000010200c039000000000021004b000009610000c13d0000000201000039000000000101041a000900000001001d0000000401000039000000000101041a000000080400002900000084024000390000dead03000039000000000032043500000024024000390000031b0300004100000000003204350000031d020000410000000000240435000002ec011001970000000402400039000000000012043500000064014000390000000000010435000000440140003900000000000104350000031e0100004100000000001004430000000001000414000002e90010009c000002e901008041000000c0011002100000031f011001c70000800b020000390b9c0b970000040f0000000100200190000007da0000613d000000000101043b0000000803000029000000a4023000390000000000120435000002e90030009c000002e901000041000000000103401900000040011002100000000002000414000002e90020009c000002e902008041000000c002200210000000000112019f000000090000006b000009350000c13d00000321011001c700000007020000290000093a0000013d000000000001042f0000006002100270000002e902200197000000000301034f0000001f0520018f000002eb06200198000000400100043d0000000004610019000007e90000613d000000000703034f0000000008010019000000007907043c0000000008980436000000000048004b000007e50000c13d000000000005004b000007f60000613d000000000363034f0000000305500210000000000604043300000000065601cf000000000656022f000000000303043b0000010005500089000000000353022f00000000035301cf000000000363019f00000000003404350000006002200210000002e90010009c000002e9010080410000004001100210000000000121019f00000b9e00010430000000070000006b0000000001000019000008010000613d0000000601000029000000000101043300000007040000290000000302400210000003470220027f0000034702200167000000000121016f0000000102400210000000000121019f000008310000013d000000060000006b00000000010000190000080e0000613d0000000501000029000000000101043300000006040000290000000302400210000003470220027f0000034702200167000000000121016f0000000102400210000000000121019f000008ca0000013d000000010320008a0000000503300270000000000431001900000020030000390000000104400039000000040600002900000000056300190000000005050433000000000051041b00000020033000390000000101100039000000000041004b0000081c0000c13d000000070020006c0000082e0000813d00000007020000290000000302200210000000f80220018f000003470220027f000003470220016700000004033000290000000003030433000000000223016f000000000021041b0000000701000029000000010110021000000001011001bf0000000302000029000000000012041b0000000901000029000003330110009a00000005020000290000000002020433000000000021041b0000000101000039000000000201041a00000065012000c9000000000002004b000008400000613d00000000022100d9000000650020008c0000088d0000c13d000000641210011a000000000001004b000000010220c0390000000101000039000000000021041b0000002002000039000000400100043d0000000003210436000000800200043d000000000023043500000346052001970000001f0420018f0000004003100039000000a10030008c0000085f0000413d000000000005004b0000085a0000613d000000000743001900000080064001bf000000200770008a0000000008570019000000000956001900000000090904330000000000980435000000200550008c000008540000c13d000000000004004b000008750000613d000000a00500003900000000060300190000086b0000013d0000000006530019000000000005004b000008680000613d000000a007000039000000000803001900000000790704340000000008980436000000000068004b000008640000c13d000000000004004b000008750000613d000000a0055000390000000304400210000000000706043300000000074701cf000000000747022f00000000050504330000010004400089000000000545022f00000000044501cf000000000474019f00000000004604350000001f042000390000034604400197000000000232001900000000000204350000004002400039000002e90020009c000002e9020080410000006002200210000002e90010009c000002e9010080410000004001100210000000000112019f0000000002000414000002e90020009c000002e902008041000000c002200210000000000121019f00000314011001c70000800d020000390000000303000039000003350400004100000008050000290000000006000411000009180000013d0000033401000041000000000010043f000003260100004100000b9e000104300000001f0530018f000002eb06300198000000400200043d00000000046200190000089c0000613d000000000701034f0000000008020019000000007907043c0000000008980436000000000048004b000008980000c13d000000000005004b000008a90000613d000000000161034f0000000305500210000000000604043300000000065601cf000000000656022f000000000101043b0000010005500089000000000151022f00000000015101cf000000000161019f00000000001404350000006001300210000002e90020009c000002e9020080410000004002200210000000000112019f00000b9e00010430000000010320008a0000000503300270000000000431001900000020030000390000000104400039000000030600002900000000056300190000000005050433000000000051041b00000020033000390000000101100039000000000041004b000008b50000c13d000000060020006c000008c70000813d00000006020000290000000302200210000000f80220018f000003470220027f000003470220016700000003033000290000000003030433000000000223016f000000000021041b0000000601000029000000010110021000000001011001bf0000000202000029000000000012041b0000000801000029000003430110009a00000004020000290000000002020433000000000021041b0000002002000039000000400100043d0000000003210436000000800200043d000000000023043500000346052001970000001f0420018f0000004003100039000000a10030008c000008eb0000413d000000000005004b000008e60000613d000000000743001900000080064001bf000000200770008a0000000008570019000000000956001900000000090904330000000000980435000000200550008c000008e00000c13d000000000004004b000009010000613d000000a0050000390000000006030019000008f70000013d0000000006530019000000000005004b000008f40000613d000000a007000039000000000803001900000000790704340000000008980436000000000068004b000008f00000c13d000000000004004b000009010000613d000000a0055000390000000304400210000000000706043300000000074701cf000000000747022f00000000050504330000010004400089000000000545022f00000000044501cf000000000474019f00000000004604350000001f042000390000034604400197000000000232001900000000000204350000004002400039000002e90020009c000002e9020080410000006002200210000002e90010009c000002e9010080410000004001100210000000000112019f0000000002000414000002e90020009c000002e902008041000000c002200210000000000121019f00000314011001c70000800d0200003900000003030000390000034404000041000000070500002900000009060000290b9c0b920000040f0000000100200190000009610000613d000000000100001900000b9d0001042e0000001f0530018f000002eb06300198000000400200043d00000000046200190000089c0000613d000000000701034f0000000008020019000000007907043c0000000008980436000000000048004b000009240000c13d0000089c0000013d0000001f0530018f000002eb06300198000000400200043d00000000046200190000089c0000613d000000000701034f0000000008020019000000007907043c0000000008980436000000000048004b000009300000c13d0000089c0000013d00000320011001c700008009020000390000000903000029000000070400002900000000050000190b9c0b920000040f0000006003100270000002e903300197000000600030008c000000600400003900000000040340190000001f0640018f000000600740019000000008057000290000094a0000613d000000000801034f0000000809000029000000008a08043c0000000009a90436000000000059004b000009460000c13d000000000006004b000009570000613d000000000771034f0000000306600210000000000805043300000000086801cf000000000868022f000000000707043b0000010006600089000000000767022f00000000066701cf000000000686019f00000000006504350000000100200190000009630000613d0000001f01400039000000e00110018f00000008011000290000030e0010009c000003950000213d000000400010043f000000600030008c0000091b0000813d000000000100001900000b9e000104300000001f0530018f000002eb06300198000000400200043d00000000046200190000089c0000613d000000000701034f0000000008020019000000007907043c0000000008980436000000000048004b0000096a0000c13d0000089c0000013d0000000602000039000000000302041a000000000013004b000009770000a13d000000000020043f0000000201100210000003300110009a000000000001042d0000033601000041000000000010043f0000003201000039000000040010043f000003370100004100000b9e000104300000000702000039000000000302041a000000000013004b000009850000a13d000000000020043f0000000201100210000003400110009a000000000001042d0000033601000041000000000010043f0000003201000039000000040010043f000003370100004100000b9e000104300003000000000002000000000201041a000000010320019000000001062002700000007f0660618f0000001f0060008c00000000040000390000000104002039000000000043004b000009ca0000c13d000000400500043d0000000004650436000000000003004b000009b50000613d000100000004001d000300000006001d000200000005001d000000000010043f0000000001000414000002e90010009c000002e901008041000000c0011002100000032c011001c700008010020000390b9c0b970000040f0000000100200190000009d60000613d0000000306000029000000000006004b000009bb0000613d000000000201043b0000000001000019000000020500002900000001070000290000000003170019000000000402041a000000000043043500000001022000390000002001100039000000000061004b000009ad0000413d000009bd0000013d00000345012001970000000000140435000000000006004b00000020010000390000000001006039000009bd0000013d000000000100001900000002050000290000003f0110003900000346021001970000000001520019000000000021004b000000000200003900000001020040390000030e0010009c000009d00000213d0000000100200190000009d00000c13d000000400010043f0000000001050019000000000001042d0000033601000041000000000010043f0000002201000039000000040010043f000003370100004100000b9e000104300000033601000041000000000010043f0000004101000039000000040010043f000003370100004100000b9e00010430000000000100001900000b9e000104300000000043010434000000000132043600000346063001970000001f0530018f000000000014004b000009ee0000813d000000000006004b000009ea0000613d00000000085400190000000007510019000000200770008a000000200880008a0000000009670019000000000a680019000000000a0a04330000000000a90435000000200660008c000009e40000c13d000000000005004b00000a040000613d0000000007010019000009fa0000013d0000000007610019000000000006004b000009f70000613d00000000080400190000000009010019000000008a0804340000000009a90436000000000079004b000009f30000c13d000000000005004b00000a040000613d00000000046400190000000305500210000000000607043300000000065601cf000000000656022f00000000040404330000010005500089000000000454022f00000000045401cf000000000464019f0000000000470435000000000431001900000000000404350000001f0330003900000346023001970000000001210019000000000001042d000000004301043400000000033204360000000004040433000002ec0440019700000000004304350000004003100039000000000303043300000040042000390000008005000039000000000054043500000080042000390000000063030434000000000034043500000346083001970000001f0730018f000000a005200039000000000056004b00000a2c0000813d000000000008004b00000a280000613d000000000a7600190000000009750019000000200990008a000000200aa0008a000000000b890019000000000c8a0019000000000c0c04330000000000cb0435000000200880008c00000a220000c13d000000000007004b00000a420000613d000000000905001900000a380000013d0000000009850019000000000008004b00000a350000613d000000000a060019000000000b05001900000000ac0a0434000000000bcb043600000000009b004b00000a310000c13d000000000007004b00000a420000613d00000000068600190000000307700210000000000809043300000000087801cf000000000878022f00000000060604330000010007700089000000000676022f00000000067601cf000000000686019f00000000006904350000000006530019000000000006043500000060022000390000006001100039000000000101043300000000001204350000001f0130003900000346011001970000000001510019000000000001042d00000000430104340000000003320436000000000404043300000000004304350000004003100039000000000303043300000040042000390000008005000039000000000054043500000080042000390000000063030434000000000034043500000346083001970000001f0730018f000000a005200039000000000056004b00000a6d0000813d000000000008004b00000a690000613d000000000a7600190000000009750019000000200990008a000000200aa0008a000000000b890019000000000c8a0019000000000c0c04330000000000cb0435000000200880008c00000a630000c13d000000000007004b00000a830000613d000000000905001900000a790000013d0000000009850019000000000008004b00000a760000613d000000000a060019000000000b05001900000000ac0a0434000000000bcb043600000000009b004b00000a720000c13d000000000007004b00000a830000613d00000000068600190000000307700210000000000809043300000000087801cf000000000878022f00000000060604330000010007700089000000000676022f00000000067601cf000000000686019f00000000006904350000000006530019000000000006043500000060022000390000006001100039000000000101043300000000001204350000001f0130003900000346011001970000000001510019000000000001042d000000400100043d000003480010009c00000a9b0000813d0000008002100039000000400020043f00000040021000390000006003000039000000000032043500000060021000390000000000020435000000200210003900000000000204350000000000010435000000000001042d0000033601000041000000000010043f0000004101000039000000040010043f000003370100004100000b9e000104300005000000000002000000400500043d000003480050009c00000af90000813d00000000060100190000008001500039000000400010043f000000000106041a00000000011504360000000102600039000000000202041a000002ec0220019700000000002104350000000201600039000000000201041a000000010320019000000001082002700000007f0880618f0000001f0080008c00000000040000390000000104002039000000000043004b00000aff0000c13d000000400700043d0000000004870436000000000003004b00000adc0000613d000100000004001d000500000008001d000200000007001d000300000006001d000400000005001d000000000010043f0000000001000414000002e90010009c000002e901008041000000c0011002100000032c011001c700008010020000390b9c0b970000040f000000010020019000000b050000613d0000000508000029000000000008004b00000ae20000613d000000000201043b000000000100001900000004050000290000000306000029000000020700002900000001090000290000000003190019000000000402041a000000000043043500000001022000390000002001100039000000000081004b00000ad40000413d00000ae60000013d00000345012001970000000000140435000000000008004b0000002001000039000000000100603900000ae60000013d00000000010000190000000405000029000000030600002900000002070000290000003f0110003900000346021001970000000001720019000000000021004b000000000200003900000001020040390000030e0010009c00000af90000213d000000010020019000000af90000c13d000000400010043f000000400150003900000000007104350000000301600039000000000101041a000000600250003900000000001204350000000001050019000000000001042d0000033601000041000000000010043f0000004101000039000000040010043f000003370100004100000b9e000104300000033601000041000000000010043f0000002201000039000000040010043f000003370100004100000b9e00010430000000000100001900000b9e00010430000000000001004b00000b0a0000613d000000000001042d000000400100043d00000044021000390000033b03000041000000000032043500000024021000390000000a0300003900000000003204350000032e020000410000000000210435000000040210003900000020030000390000000000320435000002e90010009c000002e90100804100000040011002100000032f011001c700000b9e000104300005000000000002000000400500043d000003480050009c00000b720000813d00000000060100190000008001500039000000400010043f000000000106041a00000000011504360000000102600039000000000202041a00000000002104350000000201600039000000000201041a000000010320019000000001082002700000007f0880618f0000001f0080008c00000000040000390000000104002039000000000043004b00000b780000c13d000000400700043d0000000004870436000000000003004b00000b550000613d000100000004001d000500000008001d000200000007001d000300000006001d000400000005001d000000000010043f0000000001000414000002e90010009c000002e901008041000000c0011002100000032c011001c700008010020000390b9c0b970000040f000000010020019000000b7e0000613d0000000508000029000000000008004b00000b5b0000613d000000000201043b000000000100001900000004050000290000000306000029000000020700002900000001090000290000000003190019000000000402041a000000000043043500000001022000390000002001100039000000000081004b00000b4d0000413d00000b5f0000013d00000345012001970000000000140435000000000008004b0000002001000039000000000100603900000b5f0000013d00000000010000190000000405000029000000030600002900000002070000290000003f0110003900000346021001970000000001720019000000000021004b000000000200003900000001020040390000030e0010009c00000b720000213d000000010020019000000b720000c13d000000400010043f000000400150003900000000007104350000000301600039000000000101041a000000600250003900000000001204350000000001050019000000000001042d0000033601000041000000000010043f0000004101000039000000040010043f000003370100004100000b9e000104300000033601000041000000000010043f0000002201000039000000040010043f000003370100004100000b9e00010430000000000100001900000b9e00010430000000000001042f000002e90010009c000002e90100804100000060011002100000000002000414000002e90020009c000002e902008041000000c002200210000000000112019f00000314011001c700008010020000390b9c0b970000040f000000010020019000000b900000613d000000000101043b000000000001042d000000000100001900000b9e0001043000000b95002104210000000102000039000000000001042d0000000002000019000000000001042d00000b9a002104230000000102000039000000000001042d0000000002000019000000000001042d00000b9c0000043200000b9d0001042e00000b9e000104300000000000000000010001f7a2b1f3743cff52325e3ce5a90fc379bccaa6cb0cddf7234dfb062dd600000000000000000000000000000000000000000000000000000000ffffffff00000000000000000000000000000000000000000000000000000001ffffffe000000000000000000000000000000000000000000000000000000000ffffffe0000000000000000000000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff000000000000000000000000000000000000000000000002000000000000000000000000000000c000000100000000000000000000000000000000000000000000000000000000000000000000000000719ce73d0000000000000000000000000000000000000000000000000000000090e2758100000000000000000000000000000000000000000000000000000000dfbf53ad00000000000000000000000000000000000000000000000000000000dfbf53ae00000000000000000000000000000000000000000000000000000000e44d8e1c00000000000000000000000000000000000000000000000000000000fc0c546a0000000000000000000000000000000000000000000000000000000090e2758200000000000000000000000000000000000000000000000000000000a8aa1b3100000000000000000000000000000000000000000000000000000000ddd49c1300000000000000000000000000000000000000000000000000000000884bf67b00000000000000000000000000000000000000000000000000000000884bf67c000000000000000000000000000000000000000000000000000000008d2143dc000000000000000000000000000000000000000000000000000000008da5cb5b00000000000000000000000000000000000000000000000000000000719ce73e000000000000000000000000000000000000000000000000000000008193302900000000000000000000000000000000000000000000000000000000843433e30000000000000000000000000000000000000000000000000000000052e1e92c000000000000000000000000000000000000000000000000000000005ff6cbf2000000000000000000000000000000000000000000000000000000005ff6cbf3000000000000000000000000000000000000000000000000000000006d65331200000000000000000000000000000000000000000000000000000000708b34fe0000000000000000000000000000000000000000000000000000000052e1e92d0000000000000000000000000000000000000000000000000000000054cc76a70000000000000000000000000000000000000000000000000000000056d13a80000000000000000000000000000000000000000000000000000000000f4cf691000000000000000000000000000000000000000000000000000000000f4cf6920000000000000000000000000000000000000000000000000000000017902601000000000000000000000000000000000000000000000000000000004fb2e45d000000000000000000000000000000000000000000000000000000000c0ef2b0000000000000000000000000000000000000000000000000000000000d80fefd0000000000000000000000000000000000000020000000800000000000000000000000000000000000000000000000000000000000000000ffffffffffffffff000000000000000000000000000000000000000000000000ffffffffffffff7fffffffffffffffffffffff0000000000000000000000000000000000000000000000000000000000000000ffffffffffffffffffffffffffffffffffffffff00000000000000000000000000000000000000000000000000ffffffffffffff7b9c4d535bdea7cd8a978f128b93471df48c7dbab89d703809115bdc118c235bfd0200000000000000000000000000000000000000000000000000000000000000310ab089e4439a4c15d089f94afb7896ff553aecb10793d0ab882de59d99a32e0200000200000000000000000000000000000044000000000000000000000000ad5c4648000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004000000000000000000000000c9c653960000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000440000000000000000000000000000000000000000000000000000000000000000024306c4097859c43c000000095ea7b300000000000000000000000000000000000000000000000000000000f305d71900000000000000000000000000000000000000000000000000000000796b89b91644bc98cd93958e4c9038275d622183e25ac5af08cc6b5d95539132020000020000000000000000000000000000000400000000000000000000000002000000000000000000000000000000000000c400000000000000000000000000000000000000000000000000000000000000c400000000000000000000000000000000000000000000000000000000000000000014adf4b7320334b90000000200000000000000000000000000000000000040000000000000000000000000000000000000000000000000000b35dbf821ae4f38bdda2802c8a8000000000000000000000000000000000000000000000000000000000000000000bac65e5b00000000000000000000000000000000000000040000001c00000000000000000000000000000000000000000000000000000000000000000de0b6b3a7640000000000000000000000000000000000000000000000000000000000007c5f487d00000000000000000000000000000000000000200000000000000000000000007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0a66cc928b5edb82af9bd49922954155ab7b0942694bea4ce44661d9a8736c6880200000000000000000000000000000000000020000000000000000000000000496e636f7272656374206665650000000000000000000000000000000000000008c379a000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006400000000000000000000000009addddcec1d7ba6ad726df49aeea3e93fb0c1037d551236841a60c0c883f2c109addddcec1d7ba6ad726df49aeea3e93fb0c1037d551236841a60c0c883f2c009addddcec1d7ba6ad726df49aeea3e93fb0c1037d551236841a60c0c883f2bf09addddcec1d7ba6ad726df49aeea3e93fb0c1037d551236841a60c0c883f2be00000000000000000000000000000000000000000000000000000000ad251c2720b26bd2450264026954a2a2c88bcad73c60c0e689fe0d12d646d86bfd1642004e487b7100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002400000000000000000000000047616d65206973206f7665720000000000000000000000000000000000000000f652222313e28459528d920b65115c16c04f3efc82aaedc97be59f3f377c0d3f00000000000000000000000000000000000000000000000100000000000000004f6e6c79206f776e65720000000000000000000000000000000000000000000074206578697374000000000000000000000000000000000000000000000000004d65737361676520494420746f20726573706f6e6420746f20646f6573206e6f00000000000000000000000000000000000000840000000000000000000000004d65737361676520616c726561647920726573706f6e64656420746f00000000599336d74a1247d50642b66dd6abeaa5484f6bd96b415b31bb99e26578c93978599336d74a1247d50642b66dd6abeaa5484f6bd96b415b31bb99e26578c93977599336d74a1247d50642b66dd6abeaa5484f6bd96b415b31bb99e26578c93976599336d74a1247d50642b66dd6abeaa5484f6bd96b415b31bb99e26578c93975b7cfa42f7f83eac8a1ada3f18c51fc04fa2fe60fc2ff50c9b0250df2bf4068c8ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff000000000000000000000000000000000000000000000000ffffffffffffff800000000000000000000000000000000000000000000000000000000000000000ee0334848e27c55782083aea62b9a21de32d1791fc558c6888f6d0f037aca706

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000000000000000000000000000000011c37937e08000000000000000000000000000ad1eca41e6f772be3cb5a48a6141f9bcc1af9f7c000000000000000000000000566d7510dee58360a64c9827257cf6d0dc43985e

-----Decoded View---------------
Arg [0] : _messagePrice (uint256): 5000000000000000
Arg [1] : _uniswapRouter (address): 0xad1eCa41E6F772bE3cb5A48A6141f9bcc1AF9F7c
Arg [2] : _uniswapFactory (address): 0x566d7510dEE58360a64C9827257cF6D0Dc43985E

-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000011c37937e08000
Arg [1] : 000000000000000000000000ad1eca41e6f772be3cb5a48a6141f9bcc1af9f7c
Arg [2] : 000000000000000000000000566d7510dee58360a64c9827257cf6d0dc43985e


Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.